operator.cc 40.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
C
chengduoZH 已提交
35 36 37
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
Qiao Longfei 已提交
38
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
39 40 41
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
42

Q
Qiao Longfei 已提交
43 44 45
namespace paddle {
namespace framework {

46 47 48 49 50 51
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
52

Q
qiaolongfei 已提交
53 54
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
55
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
56
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
57
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
58 59 60 61 62
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

63 64
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
65
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
66 67
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
68 69
  }

M
minqiyang 已提交
70 71
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
72 73 74
    if (UNLIKELY(!tensor.IsInitialized())) {
      return DDim({-1});
    }
M
minqiyang 已提交
75 76 77 78 79 80 81
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
82 83 84 85 86
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
87 88 89 90 91 92
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
93 94 95 96 97
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
98

M
minqiyang 已提交
99 100 101
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
102 103
      return "";
    }
Y
Yu Yang 已提交
104
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
105
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
106 107 108 109
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
110
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
111
    }
D
dzhwinter 已提交
112 113 114 115 116
  } else {
    return "";
  }
}

117 118 119 120 121 122
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
123 124
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
125 126 127 128 129
  }

  return -1;
}

130
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
131 132 133 134 135 136 137
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
138 139
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
140 141 142
    if (UNLIKELY(!tensor.IsInitialized())) {
      return default_lod;
    }
M
minqiyang 已提交
143
    return tensor.lod();
Q
Qiao Longfei 已提交
144 145 146 147 148
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
149 150 151 152 153
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
154
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
155 156 157 158 159 160
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
161
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
162 163 164 165 166 167
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

168
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
169 170 171
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
172
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
173
      PADDLE_THROW("Cannot run operator on place %s", place);
174
#else
P
peizhilin 已提交
175 176
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
177
#endif
P
peizhilin 已提交
178
    }
P
peizhilin 已提交
179

P
peizhilin 已提交
180 181 182 183 184
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
185
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
186 187 188 189 190 191
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
192
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
193
    throw std::move(exception);
P
peizhilin 已提交
194 195
  } catch (...) {
    std::rethrow_exception(std::current_exception());
196
  }
197 198
}

199
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
200
  return inputs_.find(name) != inputs_.end();
201 202
}

203
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
204
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
205
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
206 207
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
208
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
209 210
}

Y
Yu Yang 已提交
211 212
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
213
  auto it = inputs_.find(name);
214 215
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
216
  return it->second;
Y
Yan Chunwei 已提交
217 218
}

219
bool OperatorBase::HasOutputs(const std::string& name) const {
220
  if (outputs_.find(name) != outputs_.end()) {
221 222 223 224 225 226
    return true;
  } else {
    return false;
  }
}

227
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
228
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
229
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
230 231
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
232
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
233 234
}

Y
Yu Yang 已提交
235 236
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
237
  auto it = outputs_.find(name);
238 239
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
240
  return it->second;
Y
Yan Chunwei 已提交
241 242
}

243
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
244
  std::stringstream ss;
Y
Yu Yang 已提交
245
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
246 247
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
248 249
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
250 251
      auto var_name = input.second[i];
      ss << var_name;
252
      if (scope) {
Q
Qiao Longfei 已提交
253 254 255 256 257 258 259 260 261
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
262 263
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
264
        }
265
      }
Y
Yu Yang 已提交
266 267 268
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
269
    }
Y
Yu Yang 已提交
270
    ss << "]";
Y
Yu Yang 已提交
271 272
    ++it;
    if (it != inputs_.end()) {
273 274
      ss << ", ";
    }
Q
Qiao Longfei 已提交
275
  }
Y
Yu Yang 已提交
276
  ss << "}, outputs:{";
Y
Yu Yang 已提交
277 278
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
279 280
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
281 282
      auto var_name = output.second[i];
      ss << var_name;
283
      if (scope) {
Q
Qiao Longfei 已提交
284 285 286 287 288 289 290
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
291 292
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
293 294
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
295
        }
296
      }
Y
Yu Yang 已提交
297 298 299
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
300
    }
Y
Yu Yang 已提交
301
    ss << "]";
Y
Yu Yang 已提交
302 303
    ++it;
    if (it != outputs_.end()) {
304 305
      ss << ", ";
    }
Q
Qiao Longfei 已提交
306
  }
Y
Yu Yang 已提交
307
  ss << "}.";
Q
Qiao Longfei 已提交
308 309 310
  return ss.str();
}

Y
Yu Yang 已提交
311
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
312 313
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
314
                           const AttributeMap& attrs)
S
sneaxiy 已提交
315 316 317 318 319 320
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
321 322
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
323
}
324

Q
qijun 已提交
325 326
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
327
  for (auto& o : inputs_) {
Q
qijun 已提交
328 329 330 331 332 333
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
334 335 336 337 338 339 340 341 342 343
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
344
  auto& info = Info();
Y
Yu Yang 已提交
345 346

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
347
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
348 349 350 351 352 353 354 355 356
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
357 358
}

359
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
360
  if (info_ == nullptr || info_->proto_ == nullptr) return;
361

S
sneaxiy 已提交
362
  for (auto& in : info_->Proto().inputs()) {
363 364 365 366
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
367 368
  }

S
sneaxiy 已提交
369
  for (auto& out : info_->Proto().outputs()) {
370 371 372 373 374
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
391
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
392
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
393 394
}

C
chengduo 已提交
395
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
396 397 398 399
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
400
  } else {
Y
Yang Yang 已提交
401
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
402
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
403 404 405
  }
}

C
chengduo 已提交
406
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
407
  if (var->IsType<LoDTensor>()) {
408
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
409
  } else if (var->IsType<SelectedRows>()) {
410
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
411
  } else {
Y
Yang Yang 已提交
412
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
413
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
414 415 416
  }
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
449 450 451 452 453 454 455 456 457 458
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
459
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
460 461 462 463 464 465 466 467 468
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

469
template <>
470
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
471
  return Input<LoDTensor>(name);
472 473 474
}

template <>
475
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
476
    const std::string& name) const {
X
Xin Pan 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
490
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
491 492 493 494 495
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

496
template <>
497
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
498
  return Output<LoDTensor>(name);
499 500 501
}

template <>
502
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
503
    const std::string& name) const {
504 505 506 507 508
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
509
  std::vector<Tensor*> res;
510 511 512 513 514
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
515
                 });
516 517 518
  return res;
}

Y
Yu Yang 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

534 535
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
536 537
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
538
      : op_(op), ctx_(ctx) {}
539 540

  bool HasInput(const std::string& name) const override {
541
    // has only one input
X
Xin Pan 已提交
542
    const auto& ins = ctx_.inputs;
543 544
    auto it = ins.find(name);
    if (it == ins.end()) {
545 546
      return false;
    }
547
    const auto& in = it->second;
X
Xin Pan 已提交
548
    if (in.size() == 0) return false;
T
tensor-tang 已提交
549
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
550
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
551
    return in[0] != nullptr;
552 553 554
  }

  bool HasOutput(const std::string& name) const override {
555
    // has only one output
X
Xin Pan 已提交
556
    const auto& outs = ctx_.outputs;
557 558
    auto it = outs.find(name);
    if (it == outs.end()) {
559 560
      return false;
    }
561
    const auto& out = it->second;
X
Xin Pan 已提交
562
    if (out.size() == 0) {
563 564
      return false;
    }
T
tensor-tang 已提交
565 566
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
567
    return out[0] != nullptr;
568 569 570
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
571 572
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
573
    if (it == ins.end() || it->second.empty()) {
574 575
      return false;
    }
X
Xin Pan 已提交
576 577
    for (auto& input : it->second) {
      if (input == nullptr) {
578 579 580 581 582 583 584
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
585 586
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
587
    if (it == outs.end() || it->second.empty()) {
588 589
      return false;
    }
X
Xin Pan 已提交
590 591
    for (auto& output : it->second) {
      if (output == nullptr) {
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

610 611
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
612 613 614 615 616 617 618 619 620
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
621 622

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
623
                   "The type of %s and %s is not the same.", in, out);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
642 643
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
644 645 646 647 648 649 650 651
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
652
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
653
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
654 655 656 657 658
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
659

M
mozga-intel 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
679 680
  }

C
chengduo 已提交
681 682 683 684 685
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

686 687
  bool IsRuntime() const override { return true; }

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
720 721 722 723 724 725 726 727 728 729
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

744
 protected:
X
Xin Pan 已提交
745
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
746
    PADDLE_ENFORCE_NOT_NULL(var);
747 748 749 750 751
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
752
      PADDLE_THROW(
X
Xin Pan 已提交
753
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
754
          "type_id is %s.",
S
sneaxiy 已提交
755
          ToTypeName(var->Type()));
F
fengjiayi 已提交
756 757 758
    }
  }

X
Xin Pan 已提交
759 760 761 762 763 764 765 766
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
767
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
768
    PADDLE_THROW("Only compile time support this method");
769 770
  }

X
Xin Pan 已提交
771
  void SetDim(Variable* var, const DDim& dim) {
772 773 774 775 776
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
777
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
778
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
779 780 781 782 783 784 785 786 787 788 789 790
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
791 792 793
    }
  }

F
fengjiayi 已提交
794 795
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
796
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
797 798
  }

X
Xin Pan 已提交
799 800 801 802 803 804 805 806 807 808 809
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
810 811 812
    return ToVarType(var->Type());
  }

813 814 815 816 817 818 819 820 821 822 823 824 825 826
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
827 828
  }

829
  const OperatorBase& op_;
X
Xin Pan 已提交
830
  const RuntimeContext& ctx_;
831 832
};

833 834
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
835 836 837 838
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
839 840
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
841 842 843
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
844
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
845
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
846
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
847 848
}

B
baojun-nervana 已提交
849
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
850 851 852
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
853 854 855
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
856 857 858 859 860 861 862 863 864 865
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
866 867
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
868 869
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
870 871 872
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
873
      HasAttr(kAllKernelsMustComputeRuntimeShape))
874 875
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
876 877 878 879
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
880 881 882 883 884 885
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
886 887 888 889 890 891 892 893
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
894
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
895
  auto* dev_ctx = pool.Get(place);
896

897
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
898
    ChooseKernel(*runtime_ctx, scope, place);
899 900
  }

L
Liu Yiqun 已提交
901
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
902

Y
yuyang18 已提交
903 904
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
905
  auto* transfer_scope =
906
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
907

Y
yuyang18 已提交
908 909 910 911
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

912 913
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
914
  }
Q
QI JUN 已提交
915

916
  if (!all_kernels_must_compute_runtime_shape_) {
L
luotao1 已提交
917
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
918 919
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
920 921
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
922 923
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
924

Y
yuyang18 已提交
925 926 927
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
928 929
  }

D
dzhwinter 已提交
930
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
931
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
932
    dev_ctx->Wait();
D
dzhwinter 已提交
933
  }
C
chengduoZH 已提交
934

P
pkpk 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
954 955
  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
956
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
957 958
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
959
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
960
      } else if (var->IsType<framework::SelectedRows>()) {
961 962
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
963 964 965
      }
    }
  }
966 967 968 969 970 971 972

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
973
}
X
Xin Pan 已提交
974

L
Liu Yiqun 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1011 1012 1013 1014 1015
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1016 1017
}

Y
yuyang18 已提交
1018 1019 1020 1021
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1022
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1023 1024 1025
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1026
    auto* original_tensor =
C
chengduo 已提交
1027
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1028
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1029 1030
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1031
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1032 1033 1034 1035
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1036
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1037
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1038 1039
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1040
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

  std::unordered_set<std::string> no_buffer_ins;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = no_buffer_inferer(Inputs(), Outputs(), Attrs());
    }
  }

Y
yuyang18 已提交
1051
  for (auto& var_name_item : Inputs()) {
S
sneaxiy 已提交
1052 1053 1054 1055 1056
    // NOTE(zjl): STL does not guarantee fast std::unordered_set::count when set
    // is empty. At least STL implemented on my mac does calculate hash code
    // of search key even though the set is empty.
    if (!no_buffer_ins.empty() &&
        no_buffer_ins.count(var_name_item.first) > 0) {
G
gongweibao 已提交
1057
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1058
              << " in Operator " << type_;
S
sneaxiy 已提交
1059 1060 1061
      continue;
    }

X
Xin Pan 已提交
1062 1063 1064 1065
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1066
      auto* var = input_vars[i];
X
Xin Pan 已提交
1067

Y
yuyang18 已提交
1068
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1069
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1070 1071 1072
        continue;
      }

C
chengduo 已提交
1073
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1091 1092
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
1106 1107 1108 1109 1110 1111 1112 1113 1114
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1115 1116
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1117
        enable_cache_transfer_scope_ = true;
1118
      }
1119
      if (!new_scope) {
Y
yuyang18 已提交
1120 1121
        new_scope = &scope.NewScope();
      }
1122 1123 1124 1125
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1126
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1127 1128 1129
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
1130
      if (enable_cache_runtime_context_) {
1131 1132
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1133 1134

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1135
      input_vars[i] = trans_var;
1136

Y
yuyang18 已提交
1137
      Tensor out;
Y
yuyang18 已提交
1138
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1139 1140 1141 1142 1143 1144
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1145

1146
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1147
    const ExecutionContext& ctx) const {
1148 1149 1150
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1151
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1152 1153 1154
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
1165
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu) is not initialized",
X
Xin Pan 已提交
1166
                         input.first, i);
1167
          proto::VarType::Type tmp = t->type();
1168
          PADDLE_ENFORCE(
1169
              tmp == data_type || data_type == dafault_data_type,
1170
              "DataType of Paddle Op %s %s must be the same. Get (%s) != (%s)",
1171 1172
              Type(), input.first, DataTypeToString(data_type),
              DataTypeToString(tmp));
Y
Yu Yang 已提交
1173 1174 1175 1176 1177
          data_type = tmp;
        }
      }
    }
  }
1178 1179 1180
  PADDLE_ENFORCE(data_type != dafault_data_type,
                 "DataType should be indicated by input");
  return data_type;
Y
Yu Yang 已提交
1181
}
1182

1183 1184 1185 1186 1187 1188 1189 1190
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1191 1192
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1193 1194
}

Q
Qiao Longfei 已提交
1195
}  // namespace framework
L
liaogang 已提交
1196
}  // namespace paddle