manipulation.py 170.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import Counter
W
Wilber 已提交
16

Z
zhiboniu 已提交
17
from ..static import Variable, device_guard
18 19 20
from ..framework import core, in_dygraph_mode
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check, _non_static_mode
from ..framework import LayerHelper
Z
zhiboniu 已提交
21
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
W
Wilber 已提交
22
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
23
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
24
import numpy as np
25
# TODO: define functions to manipulate a tensor
26
from ..fluid.layers.nn import _elementwise_op_in_dygraph
27
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
28
import paddle
29
from paddle import _C_ops, _legacy_C_ops
30 31 32 33 34
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
35

36 37
__all__ = []

W
Wilber 已提交
38

39 40 41 42 43 44 45 46
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
47
        x (Tensor): An input N-D Tensor with data type bool, float16,
48
            float32, float64, int32, int64, uint8.
49
        dtype (np.dtype|str): Data type of the output:
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
        Tensor: A Tensor with the same shape as input's.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
66
        return _C_ops.cast(x, dtype)
67 68 69 70

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
71
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
72 73 74 75 76 77 78 79 80 81 82 83 84 85
        return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
    ], 'cast')
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
86 87 88 89 90 91 92
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        Tensor:  A ``Tensor``. The data type is same as ``input``.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
            # sliced_1 is input[0:3, 0:2, 2:4].

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
            # sliced_2 is input[0:3, 0:2, 2:4].
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
                    "Input axes should not be an empty list/tuple.")
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
                "Input axes must be a python list or tuple, but reveived {}".
                format(type(axes)))

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
196 197
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
198 199 200 201 202 203 204 205
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in ends
            ]
        elif isinstance(ends, tmp_tensor_type):
206
            tensor_t = ends.numpy()
207
            ends = [ele for ele in tensor_t]
208
            infer_flags = list(-1 for i in range(len(axes)))
209

210
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
                        "Input axes should not be an empty list/tuple.")
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
230 231
                    "Input axes must be a python list or tuple, but reveived {}"
                    .format(type(axes)))
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

261 262 263
            return _legacy_C_ops.slice(input, starts_tensor, ends_tensor, None,
                                       None, 'axes', axes, 'infer_flags',
                                       infer_flags, *attrs)
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
318 319 320 321
    helper.append_op(type='slice',
                     inputs=inputs,
                     attrs=attrs,
                     outputs={'Out': out})
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
377
        return _C_ops.transpose(x, perm)
378 379
    else:
        if _in_legacy_dygraph():
380
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
406 407 408 409 410 411 412
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    return out


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
        list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
441 442 443 444 445
    if in_dygraph_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
446
        return _C_ops.unstack(x, axis, num)
447

448 449 450 451 452
    if _non_static_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
453
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
454 455 456 457 458 459 460 461 462 463 464 465

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

466 467 468 469 470 471 472
    helper.append_op(type='unstack',
                     inputs={'X': [x]},
                     outputs={'Y': outs},
                     attrs={
                         'axis': axis,
                         'num': num
                     })
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
494

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
523 524
        return _C_ops.shard_index(input, index_num, nshards, shard_id,
                                  ignore_value)
525 526 527 528 529 530 531 532 533

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
534 535 536 537 538 539 540 541 542 543
    helper.append_op(type=op_type,
                     inputs={'X': [input]},
                     outputs={'Out': out},
                     attrs={
                         'index_num': index_num,
                         'nshards': nshards,
                         'shard_id': shard_id,
                         'ignore_value': ignore_value
                     },
                     stop_gradient=True)
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
587
        shape (list|tuple|Tensor, optional): The output shape is specified
588 589 590 591 592 593 594 595 596 597 598
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
599
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

    Returns:
        Tensor: The cropped Tensor has same data type with `x`.

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
633

634 635 636 637 638 639 640 641 642 643
    helper = LayerHelper('crop_tensor', **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')

    if offsets is None:
        offsets = [0] * len(x.shape)

644
    if in_dygraph_mode():
645
        return _C_ops.crop_tensor(x, shape, offsets)
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
714 715 716 717 718
                fill_constant([1],
                              'int32',
                              dim_size,
                              force_cpu=True,
                              out=temp_out)
719 720 721 722 723 724 725 726 727
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

728 729 730 731
    helper.append_op(type='crop_tensor',
                     inputs=ipts,
                     outputs={'Out': out},
                     attrs=None if len(attrs) == 0 else attrs)
732 733 734
    return out


735 736 737 738 739 740 741 742 743
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
744 745
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
            "The type of 'value'  must be int or float, but received %s." %
            (type(value)))
765
    if in_dygraph_mode():
766
        return _C_ops.fill_(x, value)
767
    else:
768 769
        return _legacy_C_ops.fill_any_(x, "value_float", float(value),
                                       "value_int", int(value))
770 771 772 773 774 775 776 777 778 779 780


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
781
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
782 783

    Returns:
784
        x (Tensor): Tensor x filled with zero inplace
785 786 787 788 789 790 791 792 793 794 795 796

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
797
    if in_dygraph_mode():
798
        return _C_ops.fill_(x, 0.)
799
    else:
800 801
        return _legacy_C_ops.fill_any_(x, "value_float", 0., "value_int",
                                       int(0))
802 803


804 805 806
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
807 808
    Note:
        This API is ONLY available in Dygraph mode.
809

810
    This function fill the value into the x Tensor's diagonal inplace.
811

812 813 814 815 816 817
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
818

819 820
    Returns:
        Tensor: Tensor with diagonal filled with value.
821

822 823 824 825 826 827 828
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_diagonal_')
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
    assert len(inshape) >= 2, ('Tensor dims should >= 2 in fill_diagonal_ API')
    if len(inshape) > 2:
        assert len(inshapeset) == 1, (
            'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
        )
Z
zhiboniu 已提交
846 847
    if in_dygraph_mode():
        if len(inshape) == 2:
848 849
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
850

851
    if len(inshape) == 2:
852 853 854 855
        return _legacy_C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                            'wrap', wrap)
    return _legacy_C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                        'wrap', True)
856 857


858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
    assert dim1 < len(inshape) and dim1 >= -len(inshape), (
        'dim1 should between [-rank,rank) in fill_diagonal_tensor_')
    assert dim2 < len(inshape) and dim2 >= -len(inshape), (
        'dim2 should between [-rank,rank) in fill_diagonal_tensor_')
    assert len(inshape) >= 2, (
        'Tensor dims should >= 2 in fill_diagonal_tensor_')
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
873 874
    diaglen = min(min(inshape[dim1], inshape[dim1] + offset),
                  min(inshape[dim2], inshape[dim2] - offset))
875
    predshape.append(diaglen)
876 877
    assert tuple(predshape) == tuple(
        y.shape), ("the y shape should be {}".format(predshape))
878 879 880 881
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
882
        if in_dygraph_mode():
883
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
884
        else:
885 886 887
            return _legacy_C_ops.fill_diagonal_tensor_(x, y, 'offset', offset,
                                                       'dim1', dim1, 'dim2',
                                                       dim2)
Z
zhiboniu 已提交
888
    if in_dygraph_mode():
889
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
890
    else:
891 892
        return _legacy_C_ops.fill_diagonal_tensor(x, y, 'offset', offset,
                                                  'dim1', dim1, 'dim2', dim2)
893 894 895 896


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
897 898
    Note:
        This API is ONLY available in Dygraph mode.
899 900 901 902

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
903 904 905 906 907 908
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
924 925 926 927 928 929
    return _fill_diagonal_tensor_impl(x,
                                      y,
                                      offset=offset,
                                      dim1=dim1,
                                      dim2=dim2,
                                      inplace=True)
930 931 932 933 934 935 936


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
937 938 939 940 941 942
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
958 959 960 961 962 963
    return _fill_diagonal_tensor_impl(x,
                                      y,
                                      offset=offset,
                                      dim1=dim1,
                                      dim2=dim2,
                                      inplace=False)
964 965


Z
zhiboniu 已提交
966 967 968
@dygraph_only
def tolist(x):
    """
969 970
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
971 972 973 974

    This function translate the paddle.Tensor to python list.

    Args:
975
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

    Returns:
        list: A list that contain the same value of current Tensor.


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


997 998 999
def concat(x, axis=0, name=None):
    """

1000
    Concatenates the input along the axis.
1001 1002

    Args:
1003
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1004
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1005
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1006
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1007 1008
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1009
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1010 1011

    Returns:
1012
        Tensor: A Tensor with the same data type as ``x``.
1013 1014 1015

    Examples:
        .. code-block:: python
1016

1017
            import paddle
1018

1019 1020 1021 1022 1023 1024
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1025 1026 1027
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1028 1029 1030
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1031 1032 1033 1034 1035 1036 1037 1038 1039
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1040 1041 1042 1043 1044 1045 1046
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1047
        return _C_ops.concat(input, axis)
1048 1049 1050 1051 1052 1053 1054 1055

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1056
        _legacy_C_ops.concat(input, out, 'axis', axis)
1057 1058 1059 1060 1061
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
1062 1063 1064 1065
            check_variable_and_dtype(x, 'input[' + str(id) + ']', [
                'bool', 'float16', 'float32', 'float64', 'int32', 'int64',
                'int8', 'unit8'
            ], 'concat')
1066 1067
            if x.dtype != input[0].dtype:
                raise TypeError(
1068 1069
                    "All the Tensors in the input must have the same data type."
                )
1070 1071 1072 1073 1074 1075 1076
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
1077 1078
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                "number of the elements must be 1, but received %s." % len(input)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
1101 1102 1103 1104 1105
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1106 1107 1108
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1109

1110 1111 1112 1113
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
1114
    return out
1115 1116


1117 1118
def broadcast_tensors(input, name=None):
    """
1119
    Broadcast a list of tensors following broadcast semantics
1120

1121
    Note:
1122 1123 1124
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1125 1126

    Args:
1127
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1128 1129
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1130
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1147
    if paddle.framework.in_dygraph_mode():
1148
        return _C_ops.broadcast_tensors(input)
1149
    if paddle.framework._non_static_mode():
1150
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
1183 1184
                invalid = (output_shape_r[i] != shape[i]
                           and output_shape_r[i] != 1 and shape[i] != 1)
1185 1186 1187 1188
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1189
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1202 1203
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()))
1204 1205 1206
        i += 1

    inputs = {'X': input}
1207 1208 1209 1210
    helper.append_op(type='broadcast_tensors',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs={})
1211 1212 1213 1214

    return out


Y
yaoxuefeng 已提交
1215
def flip(x, axis, name=None):
W
Wilber 已提交
1216
    """
Y
yaoxuefeng 已提交
1217
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1218 1219

    Args:
Y
yaoxuefeng 已提交
1220
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1221
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1222
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1223
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1224 1225

    Returns:
Y
yaoxuefeng 已提交
1226
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1227 1228 1229 1230 1231

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1232 1233

          image_shape=(3, 2, 2)
1234
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1235 1236
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1237

R
Roc 已提交
1238 1239
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1240
    """
R
Roc 已提交
1241 1242
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1243 1244

    if in_dygraph_mode():
1245
        return _C_ops.flip(x, axis)
H
hong 已提交
1246

Z
zhiboniu 已提交
1247
    if paddle.in_dynamic_mode():
1248
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1249

W
Wilber 已提交
1250
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1251 1252
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
1253 1254 1255
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
1256
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1257 1258 1259 1260 1261
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

1262 1263 1264 1265
    helper.append_op(type="flip",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={"axis": axis})
W
Wilber 已提交
1266
    return out
1267 1268


Z
zmxdream 已提交
1269 1270
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1271
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1272 1273 1274

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1275
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1276 1277
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1291
          print(data)
Z
zmxdream 已提交
1292 1293 1294
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1295
          y = paddle.rot90(data, 1, [0, 1])
1296
          print(y)
Z
zmxdream 已提交
1297 1298 1299
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1300
          y= paddle.rot90(data, -1, [0, 1])
1301
          print(y)
Z
zmxdream 已提交
1302 1303 1304
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1305 1306
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1307
          print(data2)
Z
zmxdream 已提交
1308 1309 1310 1311 1312
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1313
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1314 1315 1316 1317 1318
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'rot90')
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1332 1333 1334
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
                total_rot_dims))
Z
zmxdream 已提交
1335
    if input_total_dims < 2:
1336 1337 1338
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
                input_total_dims))
Z
zmxdream 已提交
1339 1340 1341

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1342 1343
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}"
            .format(axes[0], axes[1]))
Z
zmxdream 已提交
1344 1345

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1346 1347
        raise ValueError("Rotation axis0 out of range, axis0 = {}".format(
            axes[0]))
Z
zmxdream 已提交
1348
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1349 1350
        raise ValueError("Rotation axis1 out of range, axis1 = {}".format(
            axes[1]))
Z
zmxdream 已提交
1351

Z
zmxdream 已提交
1352
    k %= 4
Z
zmxdream 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
    (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                axes_list[axes[0]])
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1368
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1369
    r"""
1370 1371
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1372
    Note:
1373
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1374
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1405
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1406
                      float64, int8, int32, int64, uint8.
1407 1408
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1409
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1410 1411

    Returns:
Y
yaoxuefeng 已提交
1412
        Tensor: A tensor with the contents of the input tensor, with input \
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1423

Y
yaoxuefeng 已提交
1424 1425
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1426

1427 1428
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1429 1430 1431 1432

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1433 1434
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1435
        raise ValueError("The input x should be a Tensor")
1436

Z
zhiboniu 已提交
1437
    if not paddle.in_dynamic_mode():
1438
        check_variable_and_dtype(
1439 1440
            x, 'x',
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1441
            'flatten')
1442 1443

    x_dim = len(x.shape)
1444 1445
    if not (isinstance(start_axis,
                       int)) or (start_axis > x_dim - 1) or start_axis < -x_dim:
1446 1447
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
1448 1449
    if not (isinstance(stop_axis,
                       int)) or (stop_axis > x_dim - 1) or stop_axis < -x_dim:
1450 1451 1452 1453 1454 1455 1456 1457 1458
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1459
    if in_dygraph_mode():
1460
        return _C_ops.flatten(x, start_axis, stop_axis)
1461 1462

    if _in_legacy_dygraph():
1463 1464
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
1465 1466
        return dy_out

1467
    helper = LayerHelper('flatten', **locals())
1468 1469
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
    helper.append_op(type='flatten_contiguous_range',
                     inputs={"X": x},
                     outputs={
                         'Out': out,
                         'XShape': x_shape
                     },
                     attrs={
                         "start_axis": start_axis,
                         "stop_axis": stop_axis
                     })
1480 1481 1482
    return out


1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1493 1494
    if not (isinstance(start_axis,
                       int)) or (start_axis > x_dim - 1) or start_axis < -x_dim:
1495 1496
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
1497 1498
    if not (isinstance(stop_axis,
                       int)) or (stop_axis > x_dim - 1) or stop_axis < -x_dim:
1499 1500 1501 1502 1503 1504 1505 1506 1507
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1508
    if in_dygraph_mode():
1509
        return _C_ops.flatten_(x, start_axis, stop_axis)
1510 1511

    if _in_legacy_dygraph():
1512 1513
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
1514
        return dy_out
1515 1516


Y
yaoxuefeng 已提交
1517
def roll(x, shifts, axis=None, name=None):
1518
    """
1519 1520 1521
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1522 1523 1524
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1525
        x (Tensor): The x tensor as input.
1526
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1527
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1528
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1529 1530 1531
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1532 1533

    Returns:
Y
yaoxuefeng 已提交
1534
        Tensor: A Tensor with same data type as `x`.
1535 1536 1537

    Examples:
        .. code-block:: python
1538

1539 1540
            import paddle

1541 1542 1543
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1544
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1545
            print(out_z1)
Y
yaoxuefeng 已提交
1546 1547 1548 1549
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1550
            print(out_z2)
Y
yaoxuefeng 已提交
1551 1552 1553
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1554 1555 1556 1557 1558
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1559
    """
Y
yaoxuefeng 已提交
1560
    origin_shape = x.shape
1561 1562
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1563 1564 1565 1566
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1567
    if axis is not None:
Y
yaoxuefeng 已提交
1568 1569 1570
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1571 1572
                    "axis is out of range, it should be in range [{}, {}), but received {}"
                    .format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
1573 1574 1575
    else:
        axis = []

F
From00 已提交
1576
    if in_dygraph_mode():
1577
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1578 1579

    if _in_legacy_dygraph():
1580
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1581

1582 1583
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1584

Y
yaoxuefeng 已提交
1585
    out = helper.create_variable_for_type_inference(x.dtype)
1586

1587
    if isinstance(shifts, Variable):
1588 1589 1590 1591 1592 1593 1594
        helper.append_op(type='roll',
                         inputs={
                             'X': x,
                             "ShiftsTensor": shifts
                         },
                         outputs={'Out': out},
                         attrs={'axis': axis})
1595 1596
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
1597 1598 1599 1600 1601 1602 1603
        helper.append_op(type='roll',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'axis': axis,
                             'shifts': shifts
                         })
1604
    return out
1605 1606


L
Leo Chen 已提交
1607
def stack(x, axis=0, name=None):
1608
    """
1609
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1610
    All tensors must be of the same shape and same dtype.
1611 1612 1613

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1614
    tensor is [A, N, B], etc.
1615

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1651
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1652 1653 1654 1655 1656 1657 1658 1659

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1660
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1661
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1662
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1663
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1664
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1665
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1666

1667
    Returns:
L
Leo Chen 已提交
1668
        Tensor: The stacked tensor with same data type as input.
1669

1670
    Example:
1671
        .. code-block:: python
L
Leo Chen 已提交
1672

1673
            import paddle
1674

L
Leo Chen 已提交
1675 1676 1677
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1678

L
Leo Chen 已提交
1679 1680
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1681
            print(out)
L
Leo Chen 已提交
1682 1683 1684
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1685

1686 1687 1688 1689 1690 1691
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1692
    """
1693 1694 1695
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1696
        return _C_ops.stack(x, axis)
1697 1698

    if _in_legacy_dygraph():
1699
        return _legacy_C_ops.stack(x, 'axis', axis)
1700 1701 1702 1703 1704 1705 1706 1707

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
        if isinstance(x, Variable) and x.desc.type(
        ) == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            x = [x]
        else:
1708 1709 1710 1711
            raise TypeError(
                "The type of '%s' in %s must be %s, but received %s" %
                ('x', 'stack', 'list[Tensor], tuple[Tensor] or TensorArray',
                 type(x)))
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
            check_variable_and_dtype(i, 'x', \
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'stack')

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': x[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': True
                         })
1735
    else:
1736 1737 1738 1739
        helper.append_op(type='stack',
                         inputs={'X': x},
                         outputs={'Y': out},
                         attrs={'axis': axis})
1740 1741

    return out
1742 1743


1744
def split(x, num_or_sections, axis=0, name=None):
1745 1746
    """
    Split the input tensor into multiple sub-Tensors.
1747

1748
    Args:
1749
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1750
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1751 1752 1753 1754
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1755
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1756 1757 1758 1759
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1760
    Returns:
1761
        list(Tensor): The list of segmented Tensors.
1762

1763 1764
    Example:
        .. code-block:: python
1765

1766
            import paddle
1767

L
Leo Chen 已提交
1768 1769
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1770

L
Leo Chen 已提交
1771 1772 1773 1774
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1775 1776

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1777 1778 1779
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1780 1781

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1782 1783 1784
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1785

L
Leo Chen 已提交
1786
            # axis is negative, the real axis is (rank(x) + axis)=1
1787
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1788 1789 1790
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1791
    """
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1813 1814
                        num_or_sections[index] = num_or_sections[index].numpy(
                        )[0]
1815 1816 1817 1818 1819 1820 1821
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
                "received %s." % (type(num_or_sections)))
1822
        if in_dygraph_mode():
C
Charles-hit 已提交
1823 1824 1825 1826
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1827 1828
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1829
            _legacy_C_ops.split(input, out, *attrs)
1830
            return out
1831

1832 1833 1834 1835
    check_variable_and_dtype(input, 'input', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'int8'
    ], 'split')
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
1863 1864 1865 1866 1867
                fill_constant([1],
                              'int32',
                              dim_size,
                              force_cpu=True,
                              out=temp_out)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
        attrs['sections'] = list(
1893 1894
            map(lambda ele: -1
                if isinstance(ele, Variable) else ele, num_or_sections))
1895 1896 1897 1898 1899 1900 1901 1902
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
1903 1904 1905 1906
    helper.append_op(type='split',
                     inputs=inputs,
                     outputs={'Out': outs},
                     attrs=attrs)
1907
    return outs
1908 1909


1910 1911 1912
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
1913

1914 1915
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1916
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1917 1918 1919 1920 1921 1922 1923 1924
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
1925

1926 1927
    Example:
        .. code-block:: python
1928

1929
            import paddle
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
            "The input tensor's dimension must be greater than 1, but got {}".
            format(x.ndim))
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
1952
def squeeze(x, axis=None, name=None):
1953
    """
1954 1955 1956 1957
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
1958
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
1959

1960 1961
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
1962
    If axis is not provided, all dims equal of size 1 will be removed.
1963 1964 1965 1966 1967 1968

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
1969 1970
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
1971
          Output:
L
Leo Chen 已提交
1972
            out.shape = [3, 5]
1973 1974 1975 1976

        Case2:

          Input:
L
Leo Chen 已提交
1977 1978 1979 1980
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
1981

L
Leo Chen 已提交
1982 1983 1984
        Case4:

          Input:
1985
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
1986
            axis = [0, 2, 3]
1987
          Output:
L
Leo Chen 已提交
1988
            out.shape = [3, 5]
1989

L
Leo Chen 已提交
1990
        Case4:
1991 1992

          Input:
1993
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
1994
            axis = [-2]
1995
          Output:
L
Leo Chen 已提交
1996
            out.shape = [1, 3, 5]
1997 1998

    Args:
1999
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2000
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2001 2002 2003
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2004 2005 2006
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
2007
        Tensor: Squeezed Tensor with the same data type as input Tensor.
2008 2009 2010

    Examples:
        .. code-block:: python
2011

2012
            import paddle
2013

L
Leo Chen 已提交
2014 2015
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2016 2017

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2018
            print(output.shape)  # [5, 10]
2019

2020 2021 2022 2023
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2024
    """
L
Leo Chen 已提交
2025 2026 2027 2028 2029 2030
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2031

2032 2033 2034
    input = x
    axes = axis
    if in_dygraph_mode():
2035
        return _C_ops.squeeze(input, axes)
2036
    if _in_legacy_dygraph():
2037
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2038 2039 2040 2041 2042 2043 2044
        return out

    helper = LayerHelper("squeeze", **locals())
    check_variable_and_dtype(input, 'input', [
        'float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64',
        'complex64', 'complex128'
    ], 'squeeze')
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2057 2058
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2059 2060
    helper.append_op(type="squeeze2",
                     inputs={"X": input},
2061
                     attrs=attrs,
2062 2063 2064 2065
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
2066 2067

    return out
2068 2069


2070
@inplace_apis_in_dygraph_only
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2083 2084 2085
    input = x
    axes = axis
    if in_dygraph_mode():
2086
        return _C_ops.squeeze_(input, axes)
2087
    if _in_legacy_dygraph():
2088
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2089
        return out
2090 2091


D
duanboqiang 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100
def unique_consecutive(x,
                       return_inverse=False,
                       return_counts=False,
                       axis=None,
                       dtype="int64",
                       name=None):
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

2101 2102
    Note:
        This function is different from :func:`paddle.unique` in the sense that this function
D
duanboqiang 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

2124
            import paddle
D
duanboqiang 已提交
2125 2126

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2127
            output = paddle.unique_consecutive(x) #
D
duanboqiang 已提交
2128 2129 2130 2131 2132 2133
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2134
            output = paddle.unique_consecutive(x, axis=0) #
D
duanboqiang 已提交
2135 2136 2137
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2138
            output = paddle.unique_consecutive(x, axis=0) #
D
duanboqiang 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2150
    if in_dygraph_mode():
2151
        out, inverse, counts = _C_ops.unique_consecutive(
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
            x, return_inverse, return_counts, axis, attr_dtype)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2162
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
D
duanboqiang 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
            x, 'dtype', attr_dtype, 'return_inverse', return_inverse,
            'return_counts', return_counts, 'axis', axis)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'],
                             'unique_consecutive')
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
2188 2189 2190 2191 2192 2193
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    counts = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                       stop_gradient=True)
D
duanboqiang 已提交
2194 2195 2196 2197 2198 2199
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
2200 2201 2202 2203
    helper.append_op(type="unique_consecutive",
                     inputs={"X": x},
                     attrs=attrs,
                     outputs=outputs)
D
duanboqiang 已提交
2204 2205 2206 2207 2208
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


Z
Zhang Ting 已提交
2209 2210 2211 2212 2213
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
2214
           dtype="int64",
Z
Zhang Ting 已提交
2215
           name=None):
2216
    r"""
Z
Zhang Ting 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2228 2229
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2230 2231 2232
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2233
    Returns:
2234
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2235 2236 2237 2238 2239
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2240

Z
Zhang Ting 已提交
2241 2242
            import paddle

2243
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2244 2245 2246 2247 2248 2249 2250
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

2251
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2252 2253 2254 2255
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
2256
            np_unique = unique.numpy()
Z
Zhang Ting 已提交
2257 2258 2259 2260 2261 2262 2263
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2264
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2265 2266
    if _non_static_mode():
        if in_dygraph_mode():
2267
            out, indices, inverse, counts = _C_ops.unique(
2268 2269 2270
                x, return_index, return_inverse, return_counts, axis,
                attr_dtype)
        if _in_legacy_dygraph():
2271
            out, inverse, indices, counts = _legacy_C_ops.unique(
2272 2273 2274
                x, 'dtype', attr_dtype, 'return_index', return_index,
                'return_inverse', return_inverse, 'return_counts',
                return_counts, 'axis', axis, "is_sorted", True)
Z
Zhang Ting 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2293
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2294 2295 2296 2297 2298
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2299
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2300 2301 2302 2303 2304 2305
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
2306 2307 2308 2309 2310 2311 2312 2313
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    indices = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    counts = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                       stop_gradient=True)
2314 2315 2316 2317 2318 2319
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
2320 2321 2322 2323 2324 2325 2326 2327
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

2328 2329 2330 2331
    helper.append_op(type="unique",
                     inputs={"X": x},
                     attrs=attrs,
                     outputs=outputs)
Z
Zhang Ting 已提交
2332 2333 2334 2335 2336 2337 2338

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2339
def unsqueeze(x, axis, name=None):
2340
    """
2341 2342 2343
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2344

2345 2346
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2347 2348
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2349
    Args:
2350
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2351 2352
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2353 2354 2355
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2356 2357

    Returns:
2358
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
2359 2360 2361

    Examples:
        .. code-block:: python
2362

2363 2364
            import paddle

2365 2366
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2367

2368 2369
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2370 2371

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2372
            print(out2.shape)  # [1, 5, 1, 10]
2373

L
Leo Chen 已提交
2374
            axis = paddle.to_tensor([0, 1, 2])
2375
            out3 = paddle.unsqueeze(x, axis=axis)
2376
            print(out3.shape)  # [1, 1, 1, 5, 10]
2377 2378 2379 2380 2381 2382

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2383

2384
    """
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2398
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2399
            return out
2400
        return _C_ops.unsqueeze(input, axes)
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
    check_variable_and_dtype(input, 'input', [
        'float16',
        'float32',
        'float64',
        'bool',
        'int8',
        'int16',
        'int32',
        'int64',
        'complex64',
        'complex128',
    ], 'unsqueeze')
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2432 2433 2434 2435 2436 2437 2438
    helper.append_op(type="unsqueeze2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
2439

2440
    return out
2441 2442


2443
@inplace_apis_in_dygraph_only
2444 2445 2446 2447 2448
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2449 2450 2451 2452 2453 2454 2455 2456
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2457
            item.numpy().item(0) if isinstance(item, Variable) else item
2458
            for item in axes
2459
        ]
2460
    if in_dygraph_mode():
2461 2462
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2463
    return out
2464 2465


2466
def gather(x, index, axis=None, name=None):
2467
    """
2468 2469
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2470 2471 2472 2473 2474 2475

    .. code-block:: text


                Given:

2476
                x = [[1, 2],
2477 2478 2479
                     [3, 4],
                     [5, 6]]

2480 2481
                index = [1, 2]
                axis=[0]
2482 2483 2484

                Then:

2485
                out = [[3, 4],
2486
                       [5, 6]]
2487

2488
    Args:
2489
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2490 2491
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2492
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2493
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2494 2495
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2496 2497

    Returns:
2498
        output (Tensor): The output is a tensor with the same rank as ``x``.
2499

2500 2501 2502 2503 2504 2505
    Examples:

        .. code-block:: python

            import paddle

2506 2507
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2508 2509
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2510
    """
2511 2512
    if axis is None:
        axis = 0
2513

2514
    if in_dygraph_mode():
2515
        return _C_ops.gather(x, index, axis)
2516
    if _in_legacy_dygraph():
2517
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
2518 2519
        return _legacy_C_ops.gather(x, index, None, "axis", axis, "overwrite",
                                    False)
2520 2521

    check_variable_and_dtype(
2522 2523
        x, 'x',
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2524 2525
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2526

2527 2528 2529
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2530
    helper = LayerHelper('gather', **locals())
2531
    dtype = helper.input_dtype('x')
2532
    out = helper.create_variable_for_type_inference(dtype)
2533
    if not isinstance(axis, Variable):
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
        helper.append_op(type="gather",
                         inputs={
                             "X": x,
                             "Index": index
                         },
                         attrs={
                             'axis': axis,
                             'overwrite': False
                         },
                         outputs={"Out": out})
2544
    else:
2545 2546 2547 2548 2549 2550 2551 2552
        helper.append_op(type="gather",
                         inputs={
                             "X": x,
                             "Index": index,
                             "Axis": axis
                         },
                         attrs={"overwrite": False},
                         outputs={"Out": out})
2553

2554
    return out
myq406450149's avatar
myq406450149 已提交
2555 2556 2557 2558


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2559

myq406450149's avatar
myq406450149 已提交
2560
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2561

myq406450149's avatar
myq406450149 已提交
2562
    Args:
2563
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
2564
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2565
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2566
    Returns:
2567
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2568 2569 2570

    Example:
        .. code-block:: python
2571

myq406450149's avatar
myq406450149 已提交
2572
            import paddle
2573

C
Chen Long 已提交
2574 2575
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2576

2577
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2578 2579 2580
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2581

2582
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2583 2584 2585 2586 2587
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2588
    if in_dygraph_mode():
2589
        return _C_ops.unbind(input, axis)
2590

myq406450149's avatar
myq406450149 已提交
2591 2592 2593 2594 2595 2596 2597 2598
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2599
    if _in_legacy_dygraph():
2600
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2601 2602 2603 2604 2605 2606

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
2607 2608 2609 2610
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2611 2612 2613 2614
    helper.append_op(type="unbind",
                     inputs={"X": input},
                     outputs={"Out": outs},
                     attrs={"axis": axis})
myq406450149's avatar
myq406450149 已提交
2615
    return outs
L
lilong12 已提交
2616 2617


S
ShenLiang 已提交
2618 2619 2620 2621
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2622

S
ShenLiang 已提交
2623
    .. code-block:: python
2624

S
ShenLiang 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

2646
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2647 2648 2649 2650 2651 2652
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
2653 2654
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2655
            If True, use the overwrite mode to update the output of the same index,
2656
            if False, use the accumulate mode to update the output of the same index.Default value is True.
2657

S
ShenLiang 已提交
2658
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2659

S
ShenLiang 已提交
2660 2661 2662 2663 2664
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
2665

S
ShenLiang 已提交
2666 2667
            import paddle

2668 2669 2670
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2671

S
ShenLiang 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2692
    if in_dygraph_mode():
2693
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2694 2695
    else:
        if _in_legacy_dygraph():
2696 2697
            return _legacy_C_ops.scatter(x, index, updates, 'overwrite',
                                         overwrite)
J
Jiabin Yang 已提交
2698 2699
        else:
            check_variable_and_dtype(
2700 2701
                x, 'dtype', ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter')
J
Jiabin Yang 已提交
2702 2703 2704
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
2705 2706 2707 2708 2709 2710 2711 2712
            helper.append_op(type="scatter",
                             inputs={
                                 "X": x,
                                 "Ids": index,
                                 "Updates": updates
                             },
                             attrs={'overwrite': overwrite},
                             outputs={"Out": out})
J
Jiabin Yang 已提交
2713
            return out
S
ShenLiang 已提交
2714 2715


2716
@inplace_apis_in_dygraph_only
2717 2718 2719 2720 2721
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2722
    if in_dygraph_mode():
2723 2724
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2725 2726


2727
def scatter_nd_add(x, index, updates, name=None):
2728
    r"""
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2770
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
2788 2789 2790
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
2791

2792
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
2793 2794
            print(output.shape)
            # [3, 5, 9, 10]
2795
    """
2796
    if in_dygraph_mode():
2797
        return _C_ops.scatter_nd_add(x, index, updates)
2798 2799
    else:
        if _in_legacy_dygraph():
2800
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
2801 2802 2803 2804 2805 2806 2807 2808
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
2809 2810 2811 2812 2813 2814 2815
            helper.append_op(type="scatter_nd_add",
                             inputs={
                                 "X": x,
                                 "Index": index,
                                 "Updates": updates
                             },
                             outputs={"Out": output})
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
2860 2861


2862 2863 2864
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
2865

2866 2867 2868
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
2869
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
2870 2871 2872 2873 2874 2875
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
2876

2877
    Examples:
2878
        .. code-block:: python
2879

2880
            import paddle
2881

2882
            x = paddle.rand([3, 9, 5])
2883

2884
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
2885 2886 2887 2888
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

2889

2890 2891 2892 2893 2894 2895 2896 2897
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
2898
    return split(x, num_or_sections=chunks, axis=axis, name=name)
2899 2900


L
lilong12 已提交
2901 2902
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
2903 2904

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
2905
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
2906 2907 2908

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
2909
    Args:
L
lilong12 已提交
2910
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
2911
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
2912 2913 2914
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
2915
    Returns:
2916
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
2917

L
lilong12 已提交
2918 2919
    Examples:
        .. code-block:: python
L
lilong12 已提交
2920

L
lilong12 已提交
2921
            import paddle
L
lilong12 已提交
2922

2923
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
2924
            out = paddle.tile(data, repeat_times=[2, 1])
2925
            np_out = out.numpy()
2926 2927
            # [[1, 2, 3]
            #  [1, 2, 3]]
L
lilong12 已提交
2928

2929
            out = paddle.tile(data, repeat_times=(2, 2))
2930
            np_out = out.numpy()
2931 2932
            # [[1, 2, 3, 1, 2, 3]
            #  [1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2933

2934
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
2935
            out = paddle.tile(data, repeat_times=repeat_times)
2936
            np_out = out.numpy()
2937
            # [[1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2938
    """
H
hong 已提交
2939
    if in_dygraph_mode():
2940
        if isinstance(repeat_times, core.eager.Tensor):
2941
            assert repeat_times.ndim == 1, "Only support ndim == 1 while repeat_times is a Tensor."
2942 2943
            repeat_times = repeat_times.numpy().tolist()

2944
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
2945 2946

    if _in_legacy_dygraph():
2947
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
2948

2949 2950
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
2951 2952
        assert len(
            repeat_times.shape) == 1, ('repeat_times must be an 1-D Tensor.')
2953 2954 2955 2956 2957 2958
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
2959
                type_tuple = (int, np.int32, np.int64)
2960 2961
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
2962

2963 2964 2965
    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'tile')
L
lilong12 已提交
2966
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
2967 2968
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
2969
            "must set its stop_gradient to be True by "
2970 2971 2972
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
2973

L
lilong12 已提交
2974 2975 2976
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
2977 2978 2979 2980 2981 2982 2983 2984
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
2985
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
2986 2987 2988 2989
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
2990 2991
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
2992 2993 2994
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
2995 2996
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)
L
lilong12 已提交
2997 2998 2999

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3000 3001 3002 3003
    helper.append_op(type='tile',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
L
lilong12 已提交
3004
    return out
3005 3006


L
lilong12 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3016
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3027 3028
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3029
            out = paddle.expand_as(data_x, data_y)
3030
            np_out = out.numpy()
L
lilong12 已提交
3031 3032
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3033
    if in_dygraph_mode():
3034
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3035

H
hong 已提交
3036
    if _non_static_mode():
3037
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3038

3039 3040 3041
    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'expand_as')
L
lilong12 已提交
3042 3043 3044 3045 3046 3047 3048 3049
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
3050
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3051

3052
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3053 3054
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3055 3056 3057 3058
    helper.append_op(type='expand_as_v2',
                     inputs=inputs,
                     attrs={'target_shape': y.shape},
                     outputs={'Out': out})
L
lilong12 已提交
3059 3060 3061
    return out


3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3073
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3074
            The value -1 in shape means keeping the corresponding dimension unchanged.
3075
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3089
    if in_dygraph_mode():
3090
        return _C_ops.expand(x, shape)
3091
    if _in_legacy_dygraph():
3092
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3093 3094 3095 3096 3097 3098 3099 3100 3101

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3102
                type_tuple = (int, np.int32, np.int64)
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3145 3146 3147 3148
    helper.append_op(type='expand_v2',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
3149 3150 3151
    return out


3152 3153 3154 3155 3156
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3157
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3158 3159 3160


    Args:
C
Chen Long 已提交
3161
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3162
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3163
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3164
            The value -1 in shape means keeping the corresponding dimension unchanged.
3165 3166 3167
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
3168
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
3169 3170 3171 3172 3173 3174

    Examples:
        .. code-block:: python

            import paddle

3175
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3176
            out = paddle.expand(data, shape=[2, 3])
3177
            print(out)
3178 3179
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3180
    if in_dygraph_mode():
3181
        return _C_ops.expand(x, shape)
H
hong 已提交
3182

Z
zhiboniu 已提交
3183
    if paddle.in_dynamic_mode():
3184
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3185

3186 3187 3188 3189 3190 3191 3192 3193
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3194
                type_tuple = (int, np.int32, np.int64)
3195 3196 3197
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

3198
    check_variable_and_dtype(
3199 3200
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
3201
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
3202
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
3203 3204
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
3205
                         "some_var.stop_gradient = True, supporting "
3206 3207
                         "some_var as the input.")

3208 3209 3210
    inputs = {"X": [x]}
    attrs = {}

3211
    helper = LayerHelper('expand', **locals())
3212 3213 3214 3215 3216

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3217
                attrs_expand_shape.append(-2)
3218 3219 3220
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
3221
                    "All elements in shape of expand must be positive or -1.")
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3235 3236 3237 3238
    helper.append_op(type='expand_v2',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
3239
    return out
L
lilong12 已提交
3240 3241


3242 3243
def reshape(x, shape, name=None):
    """
3244
    Changes the shape of ``x`` without changing its data.
3245

3246
    Note that the output Tensor will share data with origin Tensor and doesn't
3247 3248
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3249 3250
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3251 3252
    Some tricks exist when specifying the target shape.

3253
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3254

3255
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3256 3257 3258

    Here are some examples to explain it.

3259
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3260

3261
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3262

3263
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3264 3265

    Args:
3266 3267
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3268 3269
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3270
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3271 3272 3273 3274 3275 3276 3277 3278 3279

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3280 3281
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3282

3283 3284 3285
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3286

3287 3288
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3289
            # the shape of out_2 is [4, 12].
3290

3291
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3292
            out = paddle.reshape(x, shape=shape_tensor)
3293
            print(out.shape)
3294
            # the shape is [8, 6].
3295 3296 3297 3298 3299
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3300
    """
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        #TODO(zhiqiu): enable inplace in dygraph mode.
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3314 3315
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in shape
3316
            ]
3317
            out = _C_ops.reshape(x, shape)
3318 3319
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3320
            out = _C_ops.reshape(x, shape)
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3339
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3340 3341
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3342
                out, _ = _legacy_C_ops.reshape2(x, shape)
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
                    " got '{}.'".format(type(shape)))

            return dygraph_utils._append_activation_in_dygraph(out, act)

    check_variable_and_dtype(x, 'x', [
        'float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'bool',
        'uint16'
    ], 'reshape')
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
                        % dim_idx)
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
3411 3412 3413 3414 3415 3416 3417
    helper.append_op(type="reshape2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
3418 3419

    return helper.append_activation(out)
3420 3421


3422
@inplace_apis_in_dygraph_only
3423 3424 3425 3426 3427
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3428 3429 3430 3431 3432 3433 3434
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in shape
            ]
3435
            out = _C_ops.reshape_(x, shape)
3436 3437
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3438
            out = _C_ops.reshape_(x, shape)
3439 3440 3441 3442 3443
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

3444
        return out
3445 3446 3447 3448 3449 3450
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3451
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3452 3453 3454 3455 3456 3457 3458 3459 3460
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3461
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3462
            return out
3463 3464


3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3484 3485 3486 3487 3488 3489 3490
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3491 3492 3493 3494

            * Case 1:
                index = [[1]]

3495 3496
                gather_nd(x, index)
                         = [x[1, :, :]]
3497 3498 3499 3500 3501 3502 3503
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3504 3505
                gather_nd(x, index)
                         = [x[0, 2, :]]
3506 3507 3508 3509 3510
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3511 3512
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3513 3514 3515 3516 3517 3518
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3519
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3520 3521 3522

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3523

3524 3525 3526
    Examples:

        .. code-block:: python
3527

3528
            import paddle
3529

3530 3531 3532
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3533

3534 3535 3536
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3537
    if in_dygraph_mode():
3538
        return _C_ops.gather_nd(x, index)
3539 3540
    else:
        if _in_legacy_dygraph():
3541
            return _legacy_C_ops.gather_nd(x, index)
3542 3543 3544 3545 3546 3547 3548
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
3549 3550 3551 3552 3553 3554
    helper.append_op(type="gather_nd",
                     inputs={
                         "X": x,
                         "Index": index
                     },
                     outputs={"Out": output})
3555
    return output
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3604

3605
    Args:
3606
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3633
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3634 3635
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3636
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3637 3638 3639
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3640
    if in_dygraph_mode():
3641
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3642

3643 3644
    helper = LayerHelper('strided_slice', **locals())

3645 3646 3647
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice')
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
            check_dtype(list_input.dtype, input_name, ['int32'],
                        'strided_slice')
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3685
    if _in_legacy_dygraph():
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
3748 3749 3750 3751
    helper.append_op(type='strided_slice',
                     inputs=inputs,
                     attrs=attrs,
                     outputs={'Out': out})
3752 3753

    return out
F
From00 已提交
3754 3755 3756 3757


def tensordot(x, y, axes=2, name=None):
    r"""
3758
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
3759 3760 3761 3762 3763 3764

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

3765
            1. It could be a non-negative integer ``n``,
F
From00 已提交
3766
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
3767 3768

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
3769
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
3770 3771 3772 3773

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
3774
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
3775 3776 3777

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
3778
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
3779
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
3780 3781
                             For more information, please refer to :ref:`api_guide_Name` .

3782 3783
    Return:
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
3784
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
3785

F
From00 已提交
3786
    NOTES:
3787
        1. This function supports tensor broadcast,
F
From00 已提交
3788
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
3789 3790 3791 3792 3793
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
3794
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
3795

F
From00 已提交
3796 3797 3798 3799 3800 3801 3802 3803
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
3804
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
3866
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
3876
        if paddle.in_dynamic_mode():
F
From00 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
            return tolist(var)
        raise TypeError(
            "The 'axes' with type 'Tensor' in " + op_type +
            " is not available in static graph mode, "
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
            "The 'axes' in " + op_type +
            f" should not be negative, but received axes={axes}.")
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
            assert sx == sy, "The dimensional size for 'x' and 'y' in " + op_type + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
        [not_contraction_size_x, contraction_size])
    y = y.transpose(perm=perm_y).reshape(
        [contraction_size, not_contraction_size_y])
    out = x.matmul(y).reshape(shape_out)
    return out
3962 3963 3964


def as_complex(x, name=None):
3965 3966
    """Transform a real tensor to a complex tensor.

3967 3968 3969
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

3970
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
3971 3972 3973 3974 3975 3976 3977 3978 3979
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            print(y.numpy())

            # [[ 0. +1.j  2. +3.j  4. +5.j]
            #  [ 6. +7.j  8. +9.j 10.+11.j]]
    """
3992 3993
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
3994 3995
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(x.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
4010 4011 4012
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
4025

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
            print(z.numpy())

            # [[[ 0.  1.]
            #   [ 2.  3.]
            #   [ 4.  5.]]

            #  [[ 6.  7.]
            #   [ 8.  9.]
            #   [10. 11.]]]
    """
4043 4044
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4045 4046
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4057 4058


K
kuizhiqing 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4068
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4069 4070 4071 4072 4073 4074 4075
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

4076 4077 4078 4079 4080
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4099 4100
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4101 4102
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4103 4104 4105 4106 4107 4108 4109

    helper = LayerHelper("repeat_interleave", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.manipulation.repeat_interleave')

    out = helper.create_variable_for_type_inference(x.dtype)

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
    helper.append_op(type='repeat_interleave',
                     inputs={
                         'X':
                         x,
                         'RepeatsTensor':
                         repeats if isinstance(repeats, Variable) else None
                     },
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'Repeats': repeats if isinstance(repeats, int) else 0
                     })
K
kuizhiqing 已提交
4122 4123 4124
    return out


4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
4143

4144 4145 4146 4147 4148 4149 4150
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4151
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4152
            # [3, 2]
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
        dst), "'source' must have the same number with 'destination'"

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
        assert isinstance(axis[0],
                          int), "Each elemment of 'source' must be integer."
        if axis[0] < 0:
            assert axis[
                0] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            src[i] += ndim
        else:
            assert axis[
                0] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)

        assert isinstance(axis[1],
                          int), "Each elemment of 'source' must be integer."
        if axis[1] < 0:
            assert axis[
                1] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            dst[i] += ndim
        else:
            assert axis[
                1] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4205
    if in_dygraph_mode():
4206
        out = _C_ops.transpose(x, perm)
4207 4208 4209
        return out

    if _in_legacy_dygraph():
4210
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4211 4212
        return out

4213 4214 4215 4216
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'moveaxis')
4217 4218 4219 4220

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
4221 4222 4223 4224 4225 4226 4227
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
4228
    return out
4229 4230


4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
        assert axis < ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
    else:
        assert axis >= -ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4245
    # This function is used in take/put_along_axis
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4256 4257 4258 4259 4260
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4261
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4262
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4263
            and need to broadcast against arr. Supported data type are int and int64.
4264
        axis (int) : The axis to take 1d slices along.
4265

4266
    Returns:
4267
        Tensor: The indexed element, same dtype with arr
4268

4269 4270 4271 4272 4273
    Examples:
        .. code-block:: python

            import paddle

4274 4275
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4276 4277 4278 4279 4280
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4281 4282 4283 4284 4285 4286 4287 4288
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4289
    if _non_static_mode():
4290
        indices = paddle.broadcast_to(indices, broadcast_shape)
4291 4292 4293 4294
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4295
        if not _in_legacy_dygraph():
4296 4297
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4298 4299 4300 4301 4302
    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'take_along_axis')
4303
    indices = paddle.broadcast_to(indices, broadcast_shape)
4304 4305 4306 4307
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4308 4309 4310
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4311 4312 4313 4314 4315 4316 4317
    helper.append_op(type="take_along_axis",
                     inputs={
                         "Input": arr,
                         "Index": indices
                     },
                     attrs={"Axis": axis},
                     outputs={"Result": result})
4318
    return result
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4329
        axis (int) : The axis to put 1d slices along.
4330
        reduce (string | optinal) : The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.
4331
    Returns :
4332
        Tensor: The indexed element, same dtype with arr
4333

4334 4335 4336 4337 4338
    Examples:
        .. code-block:: python

            import paddle

4339 4340
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4341 4342 4343 4344 4345 4346 4347 4348
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4349 4350 4351 4352 4353
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4354
    if _non_static_mode():
4355 4356
        values = paddle.to_tensor(values) if not isinstance(
            values, paddle.Tensor) else values
4357 4358 4359
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4360
        if in_dygraph_mode():
4361 4362 4363
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
        return _legacy_C_ops.put_along_axis(arr, indices, values, "Axis", axis,
                                            "Reduce", reduce)
4364 4365 4366 4367 4368 4369

    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'put_along_axis')
4370 4371 4372
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4373 4374 4375
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
    helper.append_op(type="put_along_axis",
                     inputs={
                         "Input": arr,
                         "Index": indices,
                         "Value": values
                     },
                     attrs={
                         "Axis": axis,
                         "Reduce": reduce
                     },
                     outputs={"Result": result})
4387 4388 4389 4390 4391 4392
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4393
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4394 4395
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4396 4397 4398 4399 4400
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4401 4402
    values = paddle.to_tensor(values) if not isinstance(
        values, paddle.Tensor) else values
4403 4404 4405
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4406
    if in_dygraph_mode():
4407 4408 4409
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
    return _legacy_C_ops.put_along_axis_(arr, indices, values, "Axis", axis,
                                         "Reduce", reduce)
4410 4411


L
Li Min 已提交
4412 4413 4414 4415 4416 4417 4418 4419
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4420
        axis (int): The dimension in which we index.
L
Li Min 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: same dimention and dtype with x.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4437 4438 4439 4440 4441
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.manipulation.index_add')
    check_variable_and_dtype(
        value, 'add_value', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add')

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(type='index_add',
                     inputs={
                         'X': x,
                         'Index': index,
                         'AddValue': value,
                     },
                     outputs={'Out': out},
                     attrs={'axis': axis})
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4473
    Please refer to :ref:`api_paddle_index_add`.
4474

L
Li Min 已提交
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4485 4486 4487 4488 4489
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4490 4491 4492 4493
    """
    return _C_ops.index_add_(x, index, value, axis)


4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
    'tolist': tolist
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)