tester_helper.h 41.4 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
20
#include <functional>
L
luotao1 已提交
21
#include <memory>
T
Tao Luo 已提交
22
#include <string>
L
luotao1 已提交
23
#include <thread>  // NOLINT
L
luotao1 已提交
24
#include <unordered_map>
25
#include <utility>
L
luotao1 已提交
26
#include <vector>
Y
Yiqun Liu 已提交
27 28 29
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
32 33 34
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
35
#include "paddle/fluid/inference/api/helper.h"
36
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
38
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
39
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
40
#include "paddle/fluid/inference/utils/benchmark.h"
41
#include "paddle/fluid/platform/profiler/event_tracing.h"
L
luotao1 已提交
42

N
nhzlx 已提交
43
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
44
DEFINE_string(infer_model, "", "model path");
45 46
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
L
luotao1 已提交
47
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
48
DEFINE_string(refer_result, "", "reference result for comparison");
49
DEFINE_int32(batch_size, 1, "batch size");
50
DEFINE_bool(ernie_large, false, "Test ernie large");
51 52
DEFINE_bool(with_accuracy_layer, true,
            "Calculate the accuracy while label is in the input");
53
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
54 55
DEFINE_bool(enable_bf16, false, "Enable BF16 type prediction");
DEFINE_bool(enable_int8, false, "Enable INT8 type prediction");
B
baoachun 已提交
56
DEFINE_bool(enable_quant_int8, false, "Enable QUANT INT8 type prediction");
57 58 59
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
60 61 62
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
63 64
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
65 66
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
67
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
68
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
69
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
70 71 72
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
73
DEFINE_int32(warmup_iters, 1, "Number of batches to process during warmup.");
L
luotao1 已提交
74

75 76
DEFINE_bool(enable_profile, false, "Turn on profiler for fluid");
DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
77 78
DEFINE_bool(fuse_multi_gru, false,
            "Running the inference program with multi_gru_fuse_pass");
79

80 81 82 83 84 85 86 87 88 89 90 91
// ipu related
DEFINE_int32(ipu_micro_batch_size, 1, "micro batch size");
DEFINE_int32(ipu_device_num, 1, "device num");
DEFINE_bool(ipu_enable_pipelining, false, "enable pipelining");
DEFINE_int32(ipu_batches_per_step, 1,
             "the number of batches per run in pipelining");
DEFINE_bool(ipu_enable_fp16, false, "enable fp16");
DEFINE_int32(ipu_replica_num, 1, "replica num");
DEFINE_double(ipu_available_memory_proportion, 1.0,
              "available memory proportion");
DEFINE_bool(ipu_enable_half_partial, false, "enable half partial");

L
luotao1 已提交
92 93 94
namespace paddle {
namespace inference {

95
using paddle::framework::proto::VarType;
96
using float16 = paddle::platform::float16;
97

98 99 100 101 102 103 104 105 106 107 108 109 110
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

111
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
112
  const auto *analysis_config =
113
      reinterpret_cast<const AnalysisConfig *>(config);
114
  if (use_analysis) {
115
    LOG(INFO) << *analysis_config;
116 117
    return;
  }
118
  LOG(INFO) << analysis_config->ToNativeConfig();
119
}
Y
Yan Chunwei 已提交
120

121 122 123 124 125 126 127 128
void CheckError(float data_ref, float data) {
  if (std::abs(data_ref) > 1) {
    CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
  } else {
    CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
  }
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
class Barrier {
 public:
  explicit Barrier(std::size_t count) : _count(count) {}
  void Wait() {
    std::unique_lock<std::mutex> lock(_mutex);
    if (--_count) {
      _cv.wait(lock, [this] { return _count == 0; });
    } else {
      _cv.notify_all();
    }
  }

 private:
  std::mutex _mutex;
  std::condition_variable _cv;
  std::size_t _count;
};

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
template <typename T>
class TensorReader {
 public:
  TensorReader(std::ifstream &file, size_t beginning_offset,
               std::vector<int> shape, std::string name)
      : file_(file), position_(beginning_offset), shape_(shape), name_(name) {
    numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
                             std::multiplies<size_t>());
  }

  PaddleTensor NextBatch() {
    PaddleTensor tensor;
    tensor.name = name_;
    tensor.shape = shape_;
    tensor.dtype = GetPaddleDType<T>();
    tensor.data.Resize(numel_ * sizeof(T));

    file_.seekg(position_);
    file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
    position_ = file_.tellg();

    if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
    if (file_.fail())
      throw std::runtime_error(name_ + ": failed reading file.");

    return tensor;
  }

 protected:
  std::ifstream &file_;
  size_t position_;
  std::vector<int> shape_;
  std::string name_;
  size_t numel_;
};

std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
    const std::vector<std::vector<PaddleTensor>> &test_data,
    int num_images = FLAGS_warmup_batch_size) {
  int test_data_batch_size = test_data[0][0].shape[0];
  auto iterations = test_data.size();
  auto all_test_data_size = iterations * test_data_batch_size;
  PADDLE_ENFORCE_LE(static_cast<size_t>(num_images), all_test_data_size,
                    platform::errors::InvalidArgument(
                        "The requested quantization warmup data size must be "
                        "lower or equal to the test data size. But received"
                        "warmup size is %d and test data size is %d. Please "
                        "use --warmup_batch_size parameter to set smaller "
                        "warmup batch size.",
                        num_images, all_test_data_size));

  PaddleTensor images;
  images.name = "image";
  images.shape = {num_images, 3, 224, 224};
  images.dtype = PaddleDType::FLOAT32;
  images.data.Resize(sizeof(float) * num_images * 3 * 224 * 224);

  PaddleTensor labels;
  labels.name = "label";
  labels.shape = {num_images, 1};
  labels.dtype = PaddleDType::INT64;
  labels.data.Resize(sizeof(int64_t) * num_images);

  for (int i = 0; i < num_images; i++) {
    auto batch = i / test_data_batch_size;
    auto element_in_batch = i % test_data_batch_size;
    std::copy_n(static_cast<float *>(test_data[batch][0].data.data()) +
                    element_in_batch * 3 * 224 * 224,
                3 * 224 * 224,
                static_cast<float *>(images.data.data()) + i * 3 * 224 * 224);
217 218 219 220
    if (FLAGS_with_accuracy_layer)
      std::copy_n(static_cast<int64_t *>(test_data[batch][1].data.data()) +
                      element_in_batch,
                  1, static_cast<int64_t *>(labels.data.data()) + i);
221
  }
222 223
  auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(
      FLAGS_with_accuracy_layer ? 2 : 1);
224
  (*warmup_data)[0] = std::move(images);
225
  if (FLAGS_with_accuracy_layer) (*warmup_data)[1] = std::move(labels);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  return warmup_data;
}

void SetInputs(std::vector<std::vector<PaddleTensor>> *inputs,
               int32_t batch_size = FLAGS_batch_size) {
  std::ifstream file(FLAGS_infer_data, std::ios::binary);
  if (!file) {
    FAIL() << "Couldn't open file: " << FLAGS_infer_data;
  }

  int64_t total_images{0};
  file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
  LOG(INFO) << "Total images in file: " << total_images;

  std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
  std::vector<int> label_batch_shape{batch_size, 1};
  auto images_offset_in_file = static_cast<size_t>(file.tellg());
  auto labels_offset_in_file =
      images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224;

  TensorReader<float> image_reader(file, images_offset_in_file,
                                   image_batch_shape, "image");
  TensorReader<int64_t> label_reader(file, labels_offset_in_file,
                                     label_batch_shape, "label");

  auto iterations_max = total_images / batch_size;
  auto iterations = iterations_max;
  if (FLAGS_iterations > 0 && FLAGS_iterations < iterations_max) {
    iterations = FLAGS_iterations;
  }
  for (auto i = 0; i < iterations; i++) {
    auto images = image_reader.NextBatch();
258 259 260 261 262 263 264
    std::vector<PaddleTensor> tmp_vec;
    tmp_vec.push_back(std::move(images));
    if (FLAGS_with_accuracy_layer) {
      auto labels = label_reader.NextBatch();
      tmp_vec.push_back(std::move(labels));
    }
    inputs->push_back(std::move(tmp_vec));
265 266 267
  }
}

268
// Compare result between two PaddleTensor
L
luotao1 已提交
269
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
270
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
271
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
272
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
273 274
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
275
    auto &ref_out = ref_outputs[i];
276 277
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
278
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
279 280
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
281 282 283 284 285 286 287 288 289 290 291

#define COMPARE(paddle_type, type, func)                        \
  case paddle_type: {                                           \
    type *pdata = static_cast<type *>(out.data.data());         \
    type *pdata_ref = static_cast<type *>(ref_out.data.data()); \
    for (size_t j = 0; j < size; ++j) {                         \
      func(pdata_ref[j], pdata[j]);                             \
    }                                                           \
    break;                                                      \
  }

T
tensor-tang 已提交
292
    switch (out.dtype) {
293 294 295 296 297 298 299 300 301
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
L
luotao1 已提交
302
    }
303
#undef COMPARE
L
luotao1 已提交
304 305 306
  }
}

307 308 309 310 311 312 313 314 315 316 317 318
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
319 320 321 322 323 324 325 326 327 328 329 330

#define COMPARE(paddle_type, type, func)                     \
  case paddle_type: {                                        \
    type *pdata = static_cast<type *>(out.data.data());      \
    type *pdata_ref = ref_out.data<type>(&place, &ref_size); \
    EXPECT_EQ(size, static_cast<size_t>(ref_size));          \
    for (size_t j = 0; j < size; ++j) {                      \
      func(pdata_ref[j], pdata[j]);                          \
    }                                                        \
    break;                                                   \
  }

331
    switch (out.dtype) {
332 333 334 335 336 337 338 339 340
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
341
    }
342
#undef COMPARE
343 344 345
  }
}

346
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
347
    const PaddlePredictor::Config *config, bool use_analysis = true) {
348
  const auto *analysis_config =
349
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
350
  if (use_analysis) {
351
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
352
  }
353 354
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
355 356
}

357
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
358

359
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
360
                                                   int *num_ops) {
361
  std::unordered_map<std::string, int> res;
362
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
363 364 365 366 367 368
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
369 370 371 372
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
373 374
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
375 376 377 378
      ++num;
    }
  }
  *num_ops = num;
379
  return *fusion_status;
T
Tao Luo 已提交
380 381
}

T
Tao Luo 已提交
382
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
383 384
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
385
                       std::string params_filename = "params",
N
nhzlx 已提交
386 387
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
388
  // Set fake_image_data
389 390 391 392 393
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
                    platform::errors::InvalidArgument(
                        "In SetFakeImageInput, expected test_all_data = false, "
                        "but now test_all_data=",
                        FLAGS_test_all_data));
394 395 396 397 398 399 400 401 402 403 404
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
405
  if (feed_names) {
406 407 408 409 410 411 412
    PADDLE_ENFORCE_EQ(
        feed_names->size(), feed_target_shapes.size(),
        platform::errors::InvalidArgument(
            "The size of feeds_names and size of "
            "feed_target_shapes must be equal, but now feeds_names "
            "size is %d and feed_target_shapes size is %d",
            feed_names->size(), feed_target_shapes.size()));
T
tensor-tang 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
427
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
428 429 430 431 432 433
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
434 435
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
436
    }
T
Tao Luo 已提交
437 438 439 440
  }
  (*inputs).emplace_back(input_slots);
}

441 442 443 444 445 446 447 448 449 450 451 452
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
453 454 455 456 457 458 459 460 461 462 463
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
464 465
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
466 467
    } else if (input.dtype == PaddleDType::UINT8) {
      ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
L
luotao1 已提交
468 469 470 471 472
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
473

L
luotao1 已提交
474 475
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
476
                      std::vector<std::vector<PaddleTensor>> *outputs,
477 478
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
479 480 481 482 483
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
484 485
  int iterations = 1;
  if (FLAGS_warmup_iters > 1)
486 487
    iterations =
        (std::min)(FLAGS_warmup_iters, static_cast<int>(inputs.size()));
488
  outputs->resize(iterations);
L
luotao1 已提交
489
  Timer warmup_timer;
490
  double elapsed_time = 0;
L
luotao1 已提交
491
  if (!FLAGS_zero_copy) {
492 493 494 495 496
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->Run(inputs[i], &(*outputs)[i], batch_size);
      elapsed_time += warmup_timer.toc();
    }
L
luotao1 已提交
497
  } else {
498 499 500 501 502
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->ZeroCopyRun();
      elapsed_time += warmup_timer.toc();
    }
503
  }
504 505 506
  auto batch_latency = elapsed_time / iterations;
  PrintTime(batch_size, 1, num_threads, tid, batch_latency, iterations,
            data_type);
507
  if (FLAGS_enable_profile) {
L
luotao1 已提交
508 509 510
    paddle::platform::ResetProfiler();
  }
}
511

L
luotao1 已提交
512 513
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
514
                   std::vector<std::vector<PaddleTensor>> *outputs,
515
                   int num_threads, int tid,
516 517
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
518
  int num_times = FLAGS_repeat;
519
  int iterations = inputs.size();  // process the whole dataset ...
520 521
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
522 523 524 525 526
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
527 528
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
529
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
530
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
531
#endif
532
  int predicted_num = 0;
L
luotao1 已提交
533
  if (!FLAGS_zero_copy) {
534
    for (int i = 0; i < iterations; i++) {
535
      run_timer.tic();
L
luotao1 已提交
536
      for (int j = 0; j < num_times; j++) {
537
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
538
      }
539 540 541 542 543 544
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
545
    }
L
luotao1 已提交
546
  } else {
547
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
548 549 550 551 552 553
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
554 555 556 557 558

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
559 560
    }
  }
561

Y
Yiqun Liu 已提交
562
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
563
  ProfilerStop();
Y
Yiqun Liu 已提交
564
#endif
N
nhzlx 已提交
565

566 567
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
568
            iterations, data_type);
569 570 571 572

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
573 574 575
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
576 577
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
578
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
579 580 581
  }
}

L
luotao1 已提交
582 583 584
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
585
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
586 587
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
588
  auto predictor = CreateTestPredictor(config, use_analysis);
589
  if (FLAGS_warmup) {
590
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
591
  }
592 593
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
594 595
}

L
luotao1 已提交
596
void TestMultiThreadPrediction(
597
    const PaddlePredictor::Config *config,
598
    const std::vector<std::vector<PaddleTensor>> &inputs,
599
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
600
    bool use_analysis = true) {
L
luotao1 已提交
601
  std::vector<std::thread> threads;
L
luotao1 已提交
602 603 604 605 606
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
607

L
luotao1 已提交
608 609 610 611
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
612
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
613
      auto &predictor = predictors[tid];
614 615 616 617
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
618
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
619 620 621 622 623 624 625
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

626
void TestPrediction(const PaddlePredictor::Config *config,
627
                    const std::vector<std::vector<PaddleTensor>> &inputs,
628 629
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
630
  PrintConfig(config, use_analysis);
L
luotao1 已提交
631
  if (num_threads == 1) {
T
Tao Luo 已提交
632
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
633
  } else {
T
Tao Luo 已提交
634 635
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
636 637 638
  }
}

639 640 641
void SummarizeAccuracy(float avg_acc_ref, float avg_acc, int compared_idx) {
  std::string data_type_name = "INT8";
  if (FLAGS_enable_bf16) data_type_name = "BF16";
642 643 644 645 646 647 648 649 650 651 652 653 654 655
  PADDLE_ENFORCE_LE(
      compared_idx, 2,
      platform::errors::InvalidArgument(
          "The compared_idx should be <= 2. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
  PADDLE_ENFORCE_GE(
      compared_idx, 1,
      platform::errors::InvalidArgument(
          "The compared_idx should be >= 1. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
656
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
657
  LOG(INFO) << "--- Accuracy summary --- ";
658 659
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
660 661
            << ". (condition: (FP32_" << prefix << " - " << data_type_name
            << "_" << prefix << ") <= threshold)";
662
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
663 664 665
            << std::setprecision(4) << avg_acc_ref;
  LOG(INFO) << data_type_name << ": avg " << prefix << std::fixed
            << std::setw(6) << std::setprecision(4) << avg_acc;
666 667
}

668 669 670 671 672 673 674 675
void SummarizePerformance(const char *title, float sample) {
  CHECK_GT(sample, 0.0);
  auto throughput = 1000.0 / sample;
  LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput << ", avg latency: " << sample
            << " ms";
}

676 677
void SummarizePerformance(const char *title_fp32, float sample_latency_fp32,
                          const char *title, float sample_latency) {
678 679 680
  if (FLAGS_enable_fp32) SummarizePerformance(title_fp32, sample_latency_fp32);
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
    SummarizePerformance(title, sample_latency);
681 682
}

683 684
float CompareAccuracyOne(
    const std::vector<std::vector<PaddleTensor>> &output_slots,
685
    int compared_idx) {
686 687 688 689
  PADDLE_ENFORCE_GT(output_slots.size(), 0,
                    platform::errors::InvalidArgument(
                        "The accuracy vector is empty. The accuracy vector "
                        "size should be bigger than 0"));
690

691 692 693 694 695 696 697
  float total_accs{0};

  for (size_t i = 0; i < output_slots.size(); ++i) {
    switch (compared_idx) {
      case 1:
        PADDLE_ENFORCE_GE(
            output_slots[i].size(), 2UL,
698 699 700 701
            platform::errors::InvalidArgument(
                "To achieve top 1 accuracy, output_slots size "
                "must be bigger than or equal to 2, but now the size is %d",
                output_slots[i].size()));
702 703 704
        break;
      case 2:
        PADDLE_ENFORCE_GE(
705 706 707 708 709 710
            output_slots[i].size(), 3UL,
            platform::errors::InvalidArgument(
                "To achieve top 5 accuracy or mean Average "
                "Precision (mAP), output_slots size must be "
                "bigger than or equal to 3, but now the size is %d",
                output_slots[i].size()));
711 712 713 714
        break;
      default:
        throw std::invalid_argument(
            "CompareAccuracy: compared_idx is out of range.");
715 716
    }

717
    if (output_slots[i][compared_idx].lod.size() > 0)
718
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
719 720

    if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
721
      throw std::invalid_argument(
722
          "CompareAccuracy: output is of a wrong type.");
723 724 725

    total_accs +=
        *static_cast<float *>(output_slots[i][compared_idx].data.data());
726
  }
727 728 729 730 731 732 733 734

  return total_accs / output_slots.size();
}

void CompareAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
735
  if ((FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16)) &&
736 737 738 739 740 741 742
      (output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
    throw std::invalid_argument(
        "CompareAccuracy: output_slots vector is empty.");

  float avg_acc_quant = 0.0;
  float avg_acc_ref = 0.0;

743
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
744 745 746 747
    avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);

  if (FLAGS_enable_fp32)
    avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
748

749
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
750 751 752

  if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);

753
  if (FLAGS_enable_int8 || FLAGS_enable_bf16) CHECK_GT(avg_acc_quant, 0.0);
754

755
  if (FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16))
756
    CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
757 758
}

L
luotao1 已提交
759 760 761 762 763 764 765 766 767
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
768 769 770 771
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
772 773 774 775 776 777
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
778
void CompareNativeAndAnalysis(
779
    const PaddlePredictor::Config *config,
780
    const std::vector<std::vector<PaddleTensor>> &inputs) {
781
  PrintConfig(config, true);
782
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
783
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
784
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
785 786 787 788 789 790 791 792
  PADDLE_ENFORCE_GT(native_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The native outputs is empty. The native outputs "
                        "vector size must be bigger than 0"));
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The analysis outputs is empty. The analysis outputs "
                        "vector size must be bigger than 0"));
793
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
794 795
}

796
void CompareQuantizedAndAnalysis(
797
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
798 799
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
800 801 802 803 804 805
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
806 807 808 809 810 811 812
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
813
  float sample_latency_fp32{-1};
814 815 816 817 818

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }
819 820 821 822 823

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
824
  float sample_latency_int8{-1};
825

826 827 828 829
  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                            VarType::INT8, &sample_latency_int8);
  }
830 831
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
832

833 834
  if (FLAGS_with_accuracy_layer)
    CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
835 836
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
void CompareBFloat16AndAnalysis(
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
  LOG(INFO) << "FP32 & BF16 prediction run: batch_size " << FLAGS_batch_size;

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }

  LOG(INFO) << "--- BF16 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> bf16_outputs;
  float sample_latency_bf16{-1};

  if (FLAGS_enable_bf16) {
    TestOneThreadPrediction(qcfg, inputs, &bf16_outputs, true, VarType::FP32,
                            &sample_latency_bf16);
  }
  SummarizePerformance("FP32", sample_latency_fp32, "BF16",
                       sample_latency_bf16);

873 874
  if (FLAGS_with_accuracy_layer)
    CompareAccuracy(bf16_outputs, analysis_outputs, compared_idx);
875 876
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
void CompareAnalysisAndAnalysis(
    const AnalysisConfig *config1, const AnalysisConfig *config2,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));

  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
  PrintConfig(cfg1, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
                            VarType::FP32, &sample_latency_fp32);
  }

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
  PrintConfig(cfg2, true);
  std::vector<std::vector<PaddleTensor>> int8_outputs;
  float sample_latency_int8{-1};

  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
                            &sample_latency_int8);
  }
913 914
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
915 916 917 918 919
  if (with_accuracy_layer) {
    CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
  }
}

N
nhzlx 已提交
920 921 922 923 924 925 926 927 928 929
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

930
void CompareAnalysisAndZeroCopy(
931
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
932 933 934 935 936 937 938 939 940
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
941 942
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
943 944 945 946 947 948
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
949
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
950 951 952 953 954
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

955 956 957 958 959 960 961
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
1031 1032
  auto a_shape = phi::vectorize(a.dims());
  auto b_shape = phi::vectorize(b.dims());
1033
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
1034
                                  [](int a, int b) { return a * b; });
1035
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
1036 1037 1038 1039 1040 1041 1042
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
1043
    if (framework::TransToProtoVarType(a.dtype()) == VarType::FP32) {
L
luotao1 已提交
1044 1045 1046 1047 1048 1049 1050 1051
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
1052
    } else if (framework::TransToProtoVarType(a.dtype()) == VarType::INT64) {
L
luotao1 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
1072
  if (!CompareShape(phi::vectorize(a.dims()), phi::vectorize(b.dims()))) {
L
luotao1 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
void ConvertFP32toFP16(paddle::PaddleTensor &tensor  // NOLINT
                       ) {
  int num = 1;
  for (auto dim : tensor.shape) {
    num *= dim;
  }
  PADDLE_ENFORCE_EQ(
      tensor.dtype, PaddleDType::FLOAT32,
      platform::errors::InvalidArgument(
          "The tensor dtype is not float32, only support float32 as input"));
  float *fp32_data = reinterpret_cast<float *>(tensor.data.data());
  float16 *fp16_data = new float16[num];
  for (int i = 0; i < num; i++) {
    fp16_data[i] = float16(fp32_data[i]);
  }
  tensor.data =
      PaddleBuf(static_cast<void *>(fp16_data), num * sizeof(float16));
  tensor.dtype = PaddleDType::FLOAT16;
}

void ConvertFP16toFP32(paddle::PaddleTensor &tensor  // NOLINT
                       ) {
  int num = 1;
  for (auto dim : tensor.shape) {
    num *= dim;
  }
  PADDLE_ENFORCE_EQ(
      tensor.dtype, PaddleDType::FLOAT16,
      platform::errors::InvalidArgument(
          "The tensor dtype is not float16, only support float16 as input"));
  float16 *fp16_data = reinterpret_cast<float16 *>(tensor.data.data());
  float *fp32_data = new float[num];
  for (int i = 0; i < num; i++) {
    fp32_data[i] = static_cast<float>(fp16_data[i]);
  }
  tensor.data = PaddleBuf(static_cast<void *>(fp32_data), num * sizeof(float));
  tensor.dtype = PaddleDType::FLOAT32;
}

L
luotao1 已提交
1122 1123
}  // namespace inference
}  // namespace paddle