tester_helper.h 24.5 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41 42
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
43
DEFINE_string(refer_result, "", "reference result for comparison");
44 45 46 47
DEFINE_int32(batch_size, 1, "batch size");
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
48 49 50
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
51 52
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
53 54
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
55
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
56
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
57
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
58 59 60
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
L
luotao1 已提交
61

62
DECLARE_bool(profile);
L
luotao1 已提交
63
DECLARE_int32(paddle_num_threads);
64

L
luotao1 已提交
65 66 67
namespace paddle {
namespace inference {

68 69 70 71 72 73 74 75 76 77 78 79 80
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

81
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
82
  const auto *analysis_config =
83
      reinterpret_cast<const AnalysisConfig *>(config);
84
  if (use_analysis) {
85
    LOG(INFO) << *analysis_config;
86 87
    return;
  }
88
  LOG(INFO) << analysis_config->ToNativeConfig();
89
}
Y
Yan Chunwei 已提交
90

91
// Compare result between two PaddleTensor
L
luotao1 已提交
92
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
93
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
94
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
95
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
96 97
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
98
    auto &ref_out = ref_outputs[i];
99 100
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
101
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
117
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
118 119 120
        }
        break;
      }
121 122 123 124 125 126 127 128
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
129 130 131 132
    }
  }
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
L
luotao1 已提交
164 165 166 167 168 169 170 171 172
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
173 174 175 176
    }
  }
}

177
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
178
    const PaddlePredictor::Config *config, bool use_analysis = true) {
179
  const auto *analysis_config =
180
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
181
  if (use_analysis) {
182
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
183
  }
184 185
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
186 187
}

188
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
189

190
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
191
                                                   int *num_ops) {
192
  std::unordered_map<std::string, int> res;
193
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
194 195 196 197 198 199
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
200 201 202 203
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
204 205
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
206 207 208 209
      ++num;
    }
  }
  *num_ops = num;
210
  return *fusion_status;
T
Tao Luo 已提交
211 212
}

T
Tao Luo 已提交
213
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
214 215
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
216
                       std::string params_filename = "params",
N
nhzlx 已提交
217 218
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
219 220
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
221 222 223 224 225 226 227 228 229 230 231
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
248
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
249 250 251 252 253 254
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
255 256
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
257
    }
T
Tao Luo 已提交
258 259 260 261
  }
  (*inputs).emplace_back(input_slots);
}

262 263 264 265 266 267 268 269 270 271 272 273
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
274 275 276 277 278 279 280 281 282 283 284
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
285 286
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
L
luotao1 已提交
287 288 289 290 291
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
292

L
luotao1 已提交
293 294
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
295 296
                      std::vector<std::vector<PaddleTensor>> *outputs,
                      int num_threads, int tid) {
L
luotao1 已提交
297 298 299 300 301
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
302
  outputs->resize(1);
L
luotao1 已提交
303 304 305
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
306
    predictor->Run(inputs[0], &(*outputs)[0], batch_size);
L
luotao1 已提交
307 308
  } else {
    predictor->ZeroCopyRun();
309
  }
L
luotao1 已提交
310 311 312 313 314
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
315

L
luotao1 已提交
316 317
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
318 319
                   std::vector<std::vector<PaddleTensor>> *outputs,
                   int num_threads, int tid) {
L
luotao1 已提交
320
  int num_times = FLAGS_repeat;
321
  int iterations = inputs.size();  // process the whole dataset ...
322 323
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
324 325 326 327 328
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
329 330
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
331
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
332
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
333
#endif
L
luotao1 已提交
334 335
  if (!FLAGS_zero_copy) {
    run_timer.tic();
336
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
337
      for (int j = 0; j < num_times; j++) {
338
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
339
      }
L
luotao1 已提交
340
    }
L
luotao1 已提交
341 342
    elapsed_time = run_timer.toc();
  } else {
343
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
344 345 346 347 348 349 350 351
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
    }
  }
Y
Yiqun Liu 已提交
352
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
353
  ProfilerStop();
Y
Yiqun Liu 已提交
354
#endif
N
nhzlx 已提交
355

356 357 358
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
            iterations);
L
luotao1 已提交
359 360 361
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
362 363
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
364
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
365 366 367
  }
}

L
luotao1 已提交
368 369 370
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
371
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true) {
L
luotao1 已提交
372
  auto predictor = CreateTestPredictor(config, use_analysis);
373 374 375
  if (FLAGS_warmup) {
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0);
  }
376
  PredictionRun(predictor.get(), inputs, outputs, 1, 0);
L
luotao1 已提交
377 378
}

L
luotao1 已提交
379
void TestMultiThreadPrediction(
380
    const PaddlePredictor::Config *config,
381
    const std::vector<std::vector<PaddleTensor>> &inputs,
382
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
383
    bool use_analysis = true) {
L
luotao1 已提交
384
  std::vector<std::thread> threads;
L
luotao1 已提交
385 386 387 388 389
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
390

L
luotao1 已提交
391 392 393 394
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
395
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
396
      auto &predictor = predictors[tid];
L
luotao1 已提交
397 398 399
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
400
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
401 402
      }
#endif
403 404 405 406
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
407
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
408 409 410 411 412 413 414
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

415
void TestPrediction(const PaddlePredictor::Config *config,
416
                    const std::vector<std::vector<PaddleTensor>> &inputs,
417 418
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
419
  PrintConfig(config, use_analysis);
L
luotao1 已提交
420
  if (num_threads == 1) {
T
Tao Luo 已提交
421
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
422
  } else {
T
Tao Luo 已提交
423 424
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
425 426 427
  }
}

428 429 430 431
void CompareTopAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref) {
  if (output_slots_quant.size() == 0 || output_slots_ref.size() == 0)
432 433 434
    throw std::invalid_argument(
        "CompareTopAccuracy: output_slots vector is empty.");

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
  float total_accs1_quant{0};
  float total_accs1_ref{0};
  for (size_t i = 0; i < output_slots_quant.size(); ++i) {
    PADDLE_ENFORCE(output_slots_quant[i].size() >= 2UL);
    PADDLE_ENFORCE(output_slots_ref[i].size() >= 2UL);
    // second output: acc_top1
    if (output_slots_quant[i][1].lod.size() > 0 ||
        output_slots_ref[i][1].lod.size() > 0)
      throw std::invalid_argument(
          "CompareTopAccuracy: top1 accuracy output has nonempty LoD.");
    if (output_slots_quant[i][1].dtype != paddle::PaddleDType::FLOAT32 ||
        output_slots_ref[i][1].dtype != paddle::PaddleDType::FLOAT32)
      throw std::invalid_argument(
          "CompareTopAccuracy: top1 accuracy output is of a wrong type.");
    total_accs1_quant +=
        *static_cast<float *>(output_slots_quant[i][1].data.data());
    total_accs1_ref +=
        *static_cast<float *>(output_slots_ref[i][1].data.data());
  }
  float avg_acc1_quant = total_accs1_quant / output_slots_quant.size();
  float avg_acc1_ref = total_accs1_ref / output_slots_ref.size();

  LOG(INFO) << "Avg top1 INT8 accuracy: " << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc1_quant;
  LOG(INFO) << "Avg top1 FP32 accuracy: " << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc1_ref;
461
  LOG(INFO) << "Accepted accuracy drop threshold: " << FLAGS_quantized_accuracy;
462
  CHECK_LE(std::abs(avg_acc1_quant - avg_acc1_ref), FLAGS_quantized_accuracy);
463 464
}

L
luotao1 已提交
465 466 467 468 469 470 471 472 473
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
474 475 476 477
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
478 479 480 481 482 483
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
484
void CompareNativeAndAnalysis(
485
    const PaddlePredictor::Config *config,
486
    const std::vector<std::vector<PaddleTensor>> &inputs) {
487
  PrintConfig(config, true);
488
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
489
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
490
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
491 492 493
  PADDLE_ENFORCE(native_outputs.size() > 0, "Native output is empty.");
  PADDLE_ENFORCE(analysis_outputs.size() > 0, "Analysis output is empty.");
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
494 495
}

496
void CompareQuantizedAndAnalysis(
497
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
498
    const std::vector<std::vector<PaddleTensor>> &inputs) {
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  PADDLE_ENFORCE_EQ(inputs[0][0].shape[0], FLAGS_batch_size,
                    "Input data has to be packed batch by batch.");
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true);

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
  TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true);

  LOG(INFO) << "--- comparing outputs --- ";
517 518 519
  CompareTopAccuracy(quantized_outputs, analysis_outputs);
}

N
nhzlx 已提交
520 521 522 523 524 525 526 527 528 529
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
void CompareAnalysisAndZeroCopy(
    PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
  reinterpret_cast<AnalysisConfig *>(config)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config, true);
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
549
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
550 551 552 553 554
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

L
luotao1 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
626
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
627
                                  [](int a, int b) { return a * b; });
628
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
629 630 631 632 633 634 635
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
636
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
637 638 639 640 641 642 643 644
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
645
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
677 678
}  // namespace inference
}  // namespace paddle