tester_helper.h 41.1 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
20
#include <functional>
L
luotao1 已提交
21
#include <memory>
T
Tao Luo 已提交
22
#include <string>
L
luotao1 已提交
23
#include <thread>  // NOLINT
L
luotao1 已提交
24
#include <unordered_map>
25
#include <utility>
L
luotao1 已提交
26
#include <vector>
Y
Yiqun Liu 已提交
27 28 29
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
32 33 34
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
35
#include "paddle/fluid/inference/api/helper.h"
36
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
38
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
39
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
40
#include "paddle/fluid/inference/utils/benchmark.h"
41
#include "paddle/fluid/platform/profiler/event_tracing.h"
L
luotao1 已提交
42

N
nhzlx 已提交
43
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
44
DEFINE_string(infer_model, "", "model path");
45 46
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
L
luotao1 已提交
47
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
48
DEFINE_string(refer_result, "", "reference result for comparison");
49
DEFINE_int32(batch_size, 1, "batch size");
50
DEFINE_bool(ernie_large, false, "Test ernie large");
51 52
DEFINE_bool(with_accuracy_layer, true,
            "Calculate the accuracy while label is in the input");
53
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
54 55
DEFINE_bool(enable_bf16, false, "Enable BF16 type prediction");
DEFINE_bool(enable_int8, false, "Enable INT8 type prediction");
56 57 58
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
59 60 61
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
62 63
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
64 65
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
66
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
67
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
68
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
69 70 71
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
72
DEFINE_int32(warmup_iters, 1, "Number of batches to process during warmup.");
L
luotao1 已提交
73

74 75
DEFINE_bool(enable_profile, false, "Turn on profiler for fluid");
DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
76 77
DEFINE_bool(fuse_multi_gru, false,
            "Running the inference program with multi_gru_fuse_pass");
78

79 80 81 82 83 84 85 86 87 88 89 90
// ipu related
DEFINE_int32(ipu_micro_batch_size, 1, "micro batch size");
DEFINE_int32(ipu_device_num, 1, "device num");
DEFINE_bool(ipu_enable_pipelining, false, "enable pipelining");
DEFINE_int32(ipu_batches_per_step, 1,
             "the number of batches per run in pipelining");
DEFINE_bool(ipu_enable_fp16, false, "enable fp16");
DEFINE_int32(ipu_replica_num, 1, "replica num");
DEFINE_double(ipu_available_memory_proportion, 1.0,
              "available memory proportion");
DEFINE_bool(ipu_enable_half_partial, false, "enable half partial");

L
luotao1 已提交
91 92 93
namespace paddle {
namespace inference {

94
using paddle::framework::proto::VarType;
95
using float16 = paddle::platform::float16;
96

97 98 99 100 101 102 103 104 105 106 107 108 109
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

110
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
111
  const auto *analysis_config =
112
      reinterpret_cast<const AnalysisConfig *>(config);
113
  if (use_analysis) {
114
    LOG(INFO) << *analysis_config;
115 116
    return;
  }
117
  LOG(INFO) << analysis_config->ToNativeConfig();
118
}
Y
Yan Chunwei 已提交
119

120 121 122 123 124 125 126 127
void CheckError(float data_ref, float data) {
  if (std::abs(data_ref) > 1) {
    CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
  } else {
    CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
  }
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class Barrier {
 public:
  explicit Barrier(std::size_t count) : _count(count) {}
  void Wait() {
    std::unique_lock<std::mutex> lock(_mutex);
    if (--_count) {
      _cv.wait(lock, [this] { return _count == 0; });
    } else {
      _cv.notify_all();
    }
  }

 private:
  std::mutex _mutex;
  std::condition_variable _cv;
  std::size_t _count;
};

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
template <typename T>
class TensorReader {
 public:
  TensorReader(std::ifstream &file, size_t beginning_offset,
               std::vector<int> shape, std::string name)
      : file_(file), position_(beginning_offset), shape_(shape), name_(name) {
    numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
                             std::multiplies<size_t>());
  }

  PaddleTensor NextBatch() {
    PaddleTensor tensor;
    tensor.name = name_;
    tensor.shape = shape_;
    tensor.dtype = GetPaddleDType<T>();
    tensor.data.Resize(numel_ * sizeof(T));

    file_.seekg(position_);
    file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
    position_ = file_.tellg();

    if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
    if (file_.fail())
      throw std::runtime_error(name_ + ": failed reading file.");

    return tensor;
  }

 protected:
  std::ifstream &file_;
  size_t position_;
  std::vector<int> shape_;
  std::string name_;
  size_t numel_;
};

std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
    const std::vector<std::vector<PaddleTensor>> &test_data,
    int num_images = FLAGS_warmup_batch_size) {
  int test_data_batch_size = test_data[0][0].shape[0];
  auto iterations = test_data.size();
  auto all_test_data_size = iterations * test_data_batch_size;
  PADDLE_ENFORCE_LE(static_cast<size_t>(num_images), all_test_data_size,
                    platform::errors::InvalidArgument(
                        "The requested quantization warmup data size must be "
                        "lower or equal to the test data size. But received"
                        "warmup size is %d and test data size is %d. Please "
                        "use --warmup_batch_size parameter to set smaller "
                        "warmup batch size.",
                        num_images, all_test_data_size));

  PaddleTensor images;
  images.name = "image";
  images.shape = {num_images, 3, 224, 224};
  images.dtype = PaddleDType::FLOAT32;
  images.data.Resize(sizeof(float) * num_images * 3 * 224 * 224);

  PaddleTensor labels;
  labels.name = "label";
  labels.shape = {num_images, 1};
  labels.dtype = PaddleDType::INT64;
  labels.data.Resize(sizeof(int64_t) * num_images);

  for (int i = 0; i < num_images; i++) {
    auto batch = i / test_data_batch_size;
    auto element_in_batch = i % test_data_batch_size;
    std::copy_n(static_cast<float *>(test_data[batch][0].data.data()) +
                    element_in_batch * 3 * 224 * 224,
                3 * 224 * 224,
                static_cast<float *>(images.data.data()) + i * 3 * 224 * 224);

    std::copy_n(static_cast<int64_t *>(test_data[batch][1].data.data()) +
                    element_in_batch,
                1, static_cast<int64_t *>(labels.data.data()) + i);
  }

  auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(2);
  (*warmup_data)[0] = std::move(images);
  (*warmup_data)[1] = std::move(labels);
  return warmup_data;
}

void SetInputs(std::vector<std::vector<PaddleTensor>> *inputs,
               int32_t batch_size = FLAGS_batch_size) {
  std::ifstream file(FLAGS_infer_data, std::ios::binary);
  if (!file) {
    FAIL() << "Couldn't open file: " << FLAGS_infer_data;
  }

  int64_t total_images{0};
  file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
  LOG(INFO) << "Total images in file: " << total_images;

  std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
  std::vector<int> label_batch_shape{batch_size, 1};
  auto images_offset_in_file = static_cast<size_t>(file.tellg());
  auto labels_offset_in_file =
      images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224;

  TensorReader<float> image_reader(file, images_offset_in_file,
                                   image_batch_shape, "image");
  TensorReader<int64_t> label_reader(file, labels_offset_in_file,
                                     label_batch_shape, "label");

  auto iterations_max = total_images / batch_size;
  auto iterations = iterations_max;
  if (FLAGS_iterations > 0 && FLAGS_iterations < iterations_max) {
    iterations = FLAGS_iterations;
  }
  for (auto i = 0; i < iterations; i++) {
    auto images = image_reader.NextBatch();
    auto labels = label_reader.NextBatch();
    inputs->emplace_back(
        std::vector<PaddleTensor>{std::move(images), std::move(labels)});
  }
}

263
// Compare result between two PaddleTensor
L
luotao1 已提交
264
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
265
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
266
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
267
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
268 269
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
270
    auto &ref_out = ref_outputs[i];
271 272
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
273
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
274 275
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
276 277 278 279 280 281 282 283 284 285 286

#define COMPARE(paddle_type, type, func)                        \
  case paddle_type: {                                           \
    type *pdata = static_cast<type *>(out.data.data());         \
    type *pdata_ref = static_cast<type *>(ref_out.data.data()); \
    for (size_t j = 0; j < size; ++j) {                         \
      func(pdata_ref[j], pdata[j]);                             \
    }                                                           \
    break;                                                      \
  }

T
tensor-tang 已提交
287
    switch (out.dtype) {
288 289 290 291 292 293 294 295 296
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
L
luotao1 已提交
297
    }
298
#undef COMPARE
L
luotao1 已提交
299 300 301
  }
}

302 303 304 305 306 307 308 309 310 311 312 313
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
314 315 316 317 318 319 320 321 322 323 324 325

#define COMPARE(paddle_type, type, func)                     \
  case paddle_type: {                                        \
    type *pdata = static_cast<type *>(out.data.data());      \
    type *pdata_ref = ref_out.data<type>(&place, &ref_size); \
    EXPECT_EQ(size, static_cast<size_t>(ref_size));          \
    for (size_t j = 0; j < size; ++j) {                      \
      func(pdata_ref[j], pdata[j]);                          \
    }                                                        \
    break;                                                   \
  }

326
    switch (out.dtype) {
327 328 329 330 331 332 333 334 335
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
336
    }
337
#undef COMPARE
338 339 340
  }
}

341
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
342
    const PaddlePredictor::Config *config, bool use_analysis = true) {
343
  const auto *analysis_config =
344
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
345
  if (use_analysis) {
346
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
347
  }
348 349
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
350 351
}

352
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
353

354
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
355
                                                   int *num_ops) {
356
  std::unordered_map<std::string, int> res;
357
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
358 359 360 361 362 363
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
364 365 366 367
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
368 369
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
370 371 372 373
      ++num;
    }
  }
  *num_ops = num;
374
  return *fusion_status;
T
Tao Luo 已提交
375 376
}

T
Tao Luo 已提交
377
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
378 379
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
380
                       std::string params_filename = "params",
N
nhzlx 已提交
381 382
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
383
  // Set fake_image_data
384 385 386 387 388
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
                    platform::errors::InvalidArgument(
                        "In SetFakeImageInput, expected test_all_data = false, "
                        "but now test_all_data=",
                        FLAGS_test_all_data));
389 390 391 392 393 394 395 396 397 398 399
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
400
  if (feed_names) {
401 402 403 404 405 406 407
    PADDLE_ENFORCE_EQ(
        feed_names->size(), feed_target_shapes.size(),
        platform::errors::InvalidArgument(
            "The size of feeds_names and size of "
            "feed_target_shapes must be equal, but now feeds_names "
            "size is %d and feed_target_shapes size is %d",
            feed_names->size(), feed_target_shapes.size()));
T
tensor-tang 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
422
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
423 424 425 426 427 428
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
429 430
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
431
    }
T
Tao Luo 已提交
432 433 434 435
  }
  (*inputs).emplace_back(input_slots);
}

436 437 438 439 440 441 442 443 444 445 446 447
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
448 449 450 451 452 453 454 455 456 457 458
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
459 460
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
461 462
    } else if (input.dtype == PaddleDType::UINT8) {
      ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
L
luotao1 已提交
463 464 465 466 467
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
468

L
luotao1 已提交
469 470
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
471
                      std::vector<std::vector<PaddleTensor>> *outputs,
472 473
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
474 475 476 477 478
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
479 480
  int iterations = 1;
  if (FLAGS_warmup_iters > 1)
481 482
    iterations =
        (std::min)(FLAGS_warmup_iters, static_cast<int>(inputs.size()));
483
  outputs->resize(iterations);
L
luotao1 已提交
484
  Timer warmup_timer;
485
  double elapsed_time = 0;
L
luotao1 已提交
486
  if (!FLAGS_zero_copy) {
487 488 489 490 491
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->Run(inputs[i], &(*outputs)[i], batch_size);
      elapsed_time += warmup_timer.toc();
    }
L
luotao1 已提交
492
  } else {
493 494 495 496 497
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->ZeroCopyRun();
      elapsed_time += warmup_timer.toc();
    }
498
  }
499 500 501
  auto batch_latency = elapsed_time / iterations;
  PrintTime(batch_size, 1, num_threads, tid, batch_latency, iterations,
            data_type);
502
  if (FLAGS_enable_profile) {
L
luotao1 已提交
503 504 505
    paddle::platform::ResetProfiler();
  }
}
506

L
luotao1 已提交
507 508
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
509
                   std::vector<std::vector<PaddleTensor>> *outputs,
510
                   int num_threads, int tid,
511 512
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
513
  int num_times = FLAGS_repeat;
514
  int iterations = inputs.size();  // process the whole dataset ...
515 516
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
517 518 519 520 521
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
522 523
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
524
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
525
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
526
#endif
527
  int predicted_num = 0;
L
luotao1 已提交
528
  if (!FLAGS_zero_copy) {
529
    for (int i = 0; i < iterations; i++) {
530
      run_timer.tic();
L
luotao1 已提交
531
      for (int j = 0; j < num_times; j++) {
532
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
533
      }
534 535 536 537 538 539
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
540
    }
L
luotao1 已提交
541
  } else {
542
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
543 544 545 546 547 548
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
549 550 551 552 553

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
554 555
    }
  }
556

Y
Yiqun Liu 已提交
557
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
558
  ProfilerStop();
Y
Yiqun Liu 已提交
559
#endif
N
nhzlx 已提交
560

561 562
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
563
            iterations, data_type);
564 565 566 567

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
568 569 570
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
571 572
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
573
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
574 575 576
  }
}

L
luotao1 已提交
577 578 579
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
580
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
581 582
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
583
  auto predictor = CreateTestPredictor(config, use_analysis);
584
  if (FLAGS_warmup) {
585
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
586
  }
587 588
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
589 590
}

L
luotao1 已提交
591
void TestMultiThreadPrediction(
592
    const PaddlePredictor::Config *config,
593
    const std::vector<std::vector<PaddleTensor>> &inputs,
594
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
595
    bool use_analysis = true) {
L
luotao1 已提交
596
  std::vector<std::thread> threads;
L
luotao1 已提交
597 598 599 600 601
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
602

L
luotao1 已提交
603 604 605 606
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
607
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
608
      auto &predictor = predictors[tid];
609 610 611 612
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
613
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
614 615 616 617 618 619 620
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

621
void TestPrediction(const PaddlePredictor::Config *config,
622
                    const std::vector<std::vector<PaddleTensor>> &inputs,
623 624
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
625
  PrintConfig(config, use_analysis);
L
luotao1 已提交
626
  if (num_threads == 1) {
T
Tao Luo 已提交
627
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
628
  } else {
T
Tao Luo 已提交
629 630
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
631 632 633
  }
}

634 635 636
void SummarizeAccuracy(float avg_acc_ref, float avg_acc, int compared_idx) {
  std::string data_type_name = "INT8";
  if (FLAGS_enable_bf16) data_type_name = "BF16";
637 638 639 640 641 642 643 644 645 646 647 648 649 650
  PADDLE_ENFORCE_LE(
      compared_idx, 2,
      platform::errors::InvalidArgument(
          "The compared_idx should be <= 2. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
  PADDLE_ENFORCE_GE(
      compared_idx, 1,
      platform::errors::InvalidArgument(
          "The compared_idx should be >= 1. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
651
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
652
  LOG(INFO) << "--- Accuracy summary --- ";
653 654
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
655 656
            << ". (condition: (FP32_" << prefix << " - " << data_type_name
            << "_" << prefix << ") <= threshold)";
657
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
658 659 660
            << std::setprecision(4) << avg_acc_ref;
  LOG(INFO) << data_type_name << ": avg " << prefix << std::fixed
            << std::setw(6) << std::setprecision(4) << avg_acc;
661 662
}

663 664 665 666 667 668 669 670
void SummarizePerformance(const char *title, float sample) {
  CHECK_GT(sample, 0.0);
  auto throughput = 1000.0 / sample;
  LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput << ", avg latency: " << sample
            << " ms";
}

671 672
void SummarizePerformance(const char *title_fp32, float sample_latency_fp32,
                          const char *title, float sample_latency) {
673 674 675
  if (FLAGS_enable_fp32) SummarizePerformance(title_fp32, sample_latency_fp32);
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
    SummarizePerformance(title, sample_latency);
676 677
}

678 679
float CompareAccuracyOne(
    const std::vector<std::vector<PaddleTensor>> &output_slots,
680
    int compared_idx) {
681 682 683 684
  PADDLE_ENFORCE_GT(output_slots.size(), 0,
                    platform::errors::InvalidArgument(
                        "The accuracy vector is empty. The accuracy vector "
                        "size should be bigger than 0"));
685

686 687 688 689 690 691 692
  float total_accs{0};

  for (size_t i = 0; i < output_slots.size(); ++i) {
    switch (compared_idx) {
      case 1:
        PADDLE_ENFORCE_GE(
            output_slots[i].size(), 2UL,
693 694 695 696
            platform::errors::InvalidArgument(
                "To achieve top 1 accuracy, output_slots size "
                "must be bigger than or equal to 2, but now the size is %d",
                output_slots[i].size()));
697 698 699
        break;
      case 2:
        PADDLE_ENFORCE_GE(
700 701 702 703 704 705
            output_slots[i].size(), 3UL,
            platform::errors::InvalidArgument(
                "To achieve top 5 accuracy or mean Average "
                "Precision (mAP), output_slots size must be "
                "bigger than or equal to 3, but now the size is %d",
                output_slots[i].size()));
706 707 708 709
        break;
      default:
        throw std::invalid_argument(
            "CompareAccuracy: compared_idx is out of range.");
710 711
    }

712
    if (output_slots[i][compared_idx].lod.size() > 0)
713
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
714 715

    if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
716
      throw std::invalid_argument(
717
          "CompareAccuracy: output is of a wrong type.");
718 719 720

    total_accs +=
        *static_cast<float *>(output_slots[i][compared_idx].data.data());
721
  }
722 723 724 725 726 727 728 729

  return total_accs / output_slots.size();
}

void CompareAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
730
  if ((FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16)) &&
731 732 733 734 735 736 737
      (output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
    throw std::invalid_argument(
        "CompareAccuracy: output_slots vector is empty.");

  float avg_acc_quant = 0.0;
  float avg_acc_ref = 0.0;

738
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
739 740 741 742
    avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);

  if (FLAGS_enable_fp32)
    avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
743

744
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
745 746 747

  if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);

748
  if (FLAGS_enable_int8 || FLAGS_enable_bf16) CHECK_GT(avg_acc_quant, 0.0);
749

750
  if (FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16))
751
    CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
752 753
}

L
luotao1 已提交
754 755 756 757 758 759 760 761 762
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
763 764 765 766
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
767 768 769 770 771 772
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
773
void CompareNativeAndAnalysis(
774
    const PaddlePredictor::Config *config,
775
    const std::vector<std::vector<PaddleTensor>> &inputs) {
776
  PrintConfig(config, true);
777
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
778
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
779
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
780 781 782 783 784 785 786 787
  PADDLE_ENFORCE_GT(native_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The native outputs is empty. The native outputs "
                        "vector size must be bigger than 0"));
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The analysis outputs is empty. The analysis outputs "
                        "vector size must be bigger than 0"));
788
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
789 790
}

791
void CompareQuantizedAndAnalysis(
792
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
793 794
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
795 796 797 798 799 800
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
801 802 803 804 805 806 807
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
808
  float sample_latency_fp32{-1};
809 810 811 812 813

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }
814 815 816 817 818

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
819
  float sample_latency_int8{-1};
820

821 822 823 824
  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                            VarType::INT8, &sample_latency_int8);
  }
825 826
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
827

828
  CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
829 830
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
void CompareBFloat16AndAnalysis(
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
  LOG(INFO) << "FP32 & BF16 prediction run: batch_size " << FLAGS_batch_size;

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }

  LOG(INFO) << "--- BF16 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> bf16_outputs;
  float sample_latency_bf16{-1};

  if (FLAGS_enable_bf16) {
    TestOneThreadPrediction(qcfg, inputs, &bf16_outputs, true, VarType::FP32,
                            &sample_latency_bf16);
  }
  SummarizePerformance("FP32", sample_latency_fp32, "BF16",
                       sample_latency_bf16);

  CompareAccuracy(bf16_outputs, analysis_outputs, compared_idx);
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
void CompareAnalysisAndAnalysis(
    const AnalysisConfig *config1, const AnalysisConfig *config2,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));

  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
  PrintConfig(cfg1, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
                            VarType::FP32, &sample_latency_fp32);
  }

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
  PrintConfig(cfg2, true);
  std::vector<std::vector<PaddleTensor>> int8_outputs;
  float sample_latency_int8{-1};

  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
                            &sample_latency_int8);
  }
906 907
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
908 909 910 911 912
  if (with_accuracy_layer) {
    CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
  }
}

N
nhzlx 已提交
913 914 915 916 917 918 919 920 921 922
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

923
void CompareAnalysisAndZeroCopy(
924
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
925 926 927 928 929 930 931 932 933
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
934 935
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
936 937 938 939 940 941
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
942
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
943 944 945 946 947
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

948 949 950 951 952 953 954
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
1024 1025
  auto a_shape = phi::vectorize(a.dims());
  auto b_shape = phi::vectorize(b.dims());
1026
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
1027
                                  [](int a, int b) { return a * b; });
1028
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
1029 1030 1031 1032 1033 1034 1035
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
1036
    if (framework::TransToProtoVarType(a.dtype()) == VarType::FP32) {
L
luotao1 已提交
1037 1038 1039 1040 1041 1042 1043 1044
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
1045
    } else if (framework::TransToProtoVarType(a.dtype()) == VarType::INT64) {
L
luotao1 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
1065
  if (!CompareShape(phi::vectorize(a.dims()), phi::vectorize(b.dims()))) {
L
luotao1 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
void ConvertFP32toFP16(paddle::PaddleTensor &tensor  // NOLINT
                       ) {
  int num = 1;
  for (auto dim : tensor.shape) {
    num *= dim;
  }
  PADDLE_ENFORCE_EQ(
      tensor.dtype, PaddleDType::FLOAT32,
      platform::errors::InvalidArgument(
          "The tensor dtype is not float32, only support float32 as input"));
  float *fp32_data = reinterpret_cast<float *>(tensor.data.data());
  float16 *fp16_data = new float16[num];
  for (int i = 0; i < num; i++) {
    fp16_data[i] = float16(fp32_data[i]);
  }
  tensor.data =
      PaddleBuf(static_cast<void *>(fp16_data), num * sizeof(float16));
  tensor.dtype = PaddleDType::FLOAT16;
}

void ConvertFP16toFP32(paddle::PaddleTensor &tensor  // NOLINT
                       ) {
  int num = 1;
  for (auto dim : tensor.shape) {
    num *= dim;
  }
  PADDLE_ENFORCE_EQ(
      tensor.dtype, PaddleDType::FLOAT16,
      platform::errors::InvalidArgument(
          "The tensor dtype is not float16, only support float16 as input"));
  float16 *fp16_data = reinterpret_cast<float16 *>(tensor.data.data());
  float *fp32_data = new float[num];
  for (int i = 0; i < num; i++) {
    fp32_data[i] = static_cast<float>(fp16_data[i]);
  }
  tensor.data = PaddleBuf(static_cast<void *>(fp32_data), num * sizeof(float));
  tensor.dtype = PaddleDType::FLOAT32;
}

L
luotao1 已提交
1115 1116
}  // namespace inference
}  // namespace paddle