tester_helper.h 15.3 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
L
luotao1 已提交
18
#include <algorithm>
T
Tao Luo 已提交
19
#include <string>
L
luotao1 已提交
20 21
#include <thread>  // NOLINT
#include <vector>
22

L
luotao1 已提交
23
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
24
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
25 26 27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
29 30 31

#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
32
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
34 35
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
36
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
37 38
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
39
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
40 41 42 43
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
44 45
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
46 47
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
48
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
49

50
DECLARE_bool(profile);
L
luotao1 已提交
51
DECLARE_int32(paddle_num_threads);
52

L
luotao1 已提交
53 54 55
namespace paddle {
namespace inference {

56
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
57 58
  const auto *analysis_config =
      reinterpret_cast<const contrib::AnalysisConfig *>(config);
59
  if (use_analysis) {
60
    LOG(INFO) << *analysis_config;
61 62
    return;
  }
63
  LOG(INFO) << analysis_config->ToNativeConfig();
64
}
Y
Yan Chunwei 已提交
65

L
luotao1 已提交
66
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
67
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
68
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
69
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
70 71
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
72
    auto &ref_out = ref_outputs[i];
73 74
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
75
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
L
luotao1 已提交
91
          EXPECT_NEAR(pdata_ref[j], pdata[j], FLAGS_accuracy);
T
tensor-tang 已提交
92 93 94
        }
        break;
      }
L
luotao1 已提交
95 96 97 98
    }
  }
}

99
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
100
    const PaddlePredictor::Config *config, bool use_analysis = true) {
101 102
  const auto *analysis_config =
      reinterpret_cast<const contrib::AnalysisConfig *>(config);
T
Tao Luo 已提交
103
  if (use_analysis) {
104
    return CreatePaddlePredictor<contrib::AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
105
  }
106 107
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
108 109
}

110
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
111

112
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
113
                                                   int *num_ops) {
114
  std::unordered_map<std::string, int> res;
115
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
116 117 118 119 120 121
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
122 123 124 125
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
126 127
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
128 129 130 131
      ++num;
    }
  }
  *num_ops = num;
132
  return *fusion_status;
T
Tao Luo 已提交
133 134
}

T
Tao Luo 已提交
135
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
136 137
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
138 139
                       std::string params_filename = "params",
                       const std::vector<std::string> *feed_names = nullptr) {
T
Tao Luo 已提交
140 141
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
142 143 144 145 146 147 148 149 150 151 152
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
      *(input_data + j) = static_cast<float>(j) / len;
    }
T
Tao Luo 已提交
178 179 180 181
  }
  (*inputs).emplace_back(input_slots);
}

182 183 184 185 186 187 188 189 190 191 192 193
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
194
void TestOneThreadPrediction(
195
    const PaddlePredictor::Config *config,
196
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
197
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
198 199
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
200
  auto predictor = CreateTestPredictor(config, use_analysis);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

  // warmup run
  LOG(INFO) << "Warm up run...";
  {
    Timer warmup_timer;
    warmup_timer.tic();
    predictor->Run(inputs[0], outputs, batch_size);
    PrintTime(batch_size, 1, 1, 0, warmup_timer.toc(), 1);
    if (FLAGS_profile) {
      paddle::platform::ResetProfiler();
    }
  }

  LOG(INFO) << "Run " << num_times << " times...";
  {
    Timer run_timer;
    run_timer.tic();
    for (int i = 0; i < num_times; i++) {
      for (size_t j = 0; j < inputs.size(); j++) {
        predictor->Run(inputs[j], outputs, batch_size);
      }
L
luotao1 已提交
222
    }
N
nhzlx 已提交
223 224 225 226 227 228 229 230 231 232

    double latency = run_timer.toc() / num_times;
    PrintTime(batch_size, num_times, 1, 0, latency, inputs.size());
    if (FLAGS_record_benchmark) {
      Benchmark benchmark;
      benchmark.SetName(FLAGS_model_name);
      benchmark.SetBatchSize(batch_size);
      benchmark.SetLatency(latency);
      benchmark.PersistToFile("benchmark_record.txt");
    }
L
luotao1 已提交
233 234 235 236
  }
}

void TestMultiThreadPrediction(
237
    const PaddlePredictor::Config *config,
238
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
239 240
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
241 242 243
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
244
  auto main_predictor = CreateTestPredictor(config, use_analysis);
245 246

  size_t total_time{0};
L
luotao1 已提交
247 248 249 250 251
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
252 253 254
      // To ensure the thread binding correctly,
      // please clone inside the threadpool.
      auto predictor = main_predictor->Clone();
L
luotao1 已提交
255 256 257
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
258
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
259 260
      }
#endif
T
Tao Luo 已提交
261 262 263 264 265 266 267 268 269 270

      // warmup run
      LOG(INFO) << "Running thread " << tid << ", warm up run...";
      {
        Timer warmup_timer;
        warmup_timer.tic();
        predictor->Run(inputs[0], outputs, batch_size);
        PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
        if (FLAGS_profile) {
          paddle::platform::ResetProfiler();
L
luotao1 已提交
271 272
        }
      }
273

T
Tao Luo 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
      LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
      {
        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          for (const auto &input : inputs) {
            ASSERT_TRUE(predictor->Run(input, &outputs_tid));
          }
        }

        auto time = timer.toc();
        total_time += time;
        PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
                  inputs.size());
      }
L
luotao1 已提交
289 290 291 292 293 294 295
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

296
void TestPrediction(const PaddlePredictor::Config *config,
297
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
298 299
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
300
  PrintConfig(config, use_analysis);
L
luotao1 已提交
301
  if (num_threads == 1) {
T
Tao Luo 已提交
302
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
303
  } else {
T
Tao Luo 已提交
304 305
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
306 307 308
  }
}

L
luotao1 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  // warmup run
  std::vector<PaddleTensor> warmup_outputs, outputs;
  predictor->Run(inputs[0], &warmup_outputs, batch_size);

  // run num_times to Compare Deterministic Result.
  for (int i = 0; i < num_times; i++) {
    for (size_t j = 0; j < inputs.size(); j++) {
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
329
void CompareNativeAndAnalysis(
330
    const PaddlePredictor::Config *config,
331
    const std::vector<std::vector<PaddleTensor>> &inputs) {
332
  PrintConfig(config, true);
T
Tao Luo 已提交
333
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
334
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
335 336 337 338
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
420
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
421 422 423 424 425 426 427 428
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
429
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
461 462
}  // namespace inference
}  // namespace paddle