tester_helper.h 41.3 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
20
#include <functional>
L
luotao1 已提交
21
#include <memory>
T
Tao Luo 已提交
22
#include <string>
L
luotao1 已提交
23
#include <thread>  // NOLINT
L
luotao1 已提交
24
#include <unordered_map>
25
#include <utility>
L
luotao1 已提交
26
#include <vector>
Y
Yiqun Liu 已提交
27 28 29
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
32 33 34
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
35
#include "paddle/fluid/inference/api/helper.h"
36
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
38
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
39
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
40
#include "paddle/fluid/inference/utils/benchmark.h"
41
#include "paddle/fluid/platform/profiler/event_tracing.h"
L
luotao1 已提交
42

N
nhzlx 已提交
43
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
44
DEFINE_string(infer_model, "", "model path");
45 46
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
L
luotao1 已提交
47
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
48
DEFINE_string(refer_result, "", "reference result for comparison");
49
DEFINE_int32(batch_size, 1, "batch size");
50
DEFINE_bool(ernie_large, false, "Test ernie large");
51 52
DEFINE_bool(with_accuracy_layer, true,
            "Calculate the accuracy while label is in the input");
53
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
54 55
DEFINE_bool(enable_bf16, false, "Enable BF16 type prediction");
DEFINE_bool(enable_int8, false, "Enable INT8 type prediction");
56 57 58
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
59 60 61
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
62 63
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
64 65
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
66
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
67
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
68
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
69 70 71
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
72
DEFINE_int32(warmup_iters, 1, "Number of batches to process during warmup.");
L
luotao1 已提交
73

74 75
DEFINE_bool(enable_profile, false, "Turn on profiler for fluid");
DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
76 77
DEFINE_bool(fuse_multi_gru, false,
            "Running the inference program with multi_gru_fuse_pass");
78

79 80 81 82 83 84 85 86 87 88 89 90
// ipu related
DEFINE_int32(ipu_micro_batch_size, 1, "micro batch size");
DEFINE_int32(ipu_device_num, 1, "device num");
DEFINE_bool(ipu_enable_pipelining, false, "enable pipelining");
DEFINE_int32(ipu_batches_per_step, 1,
             "the number of batches per run in pipelining");
DEFINE_bool(ipu_enable_fp16, false, "enable fp16");
DEFINE_int32(ipu_replica_num, 1, "replica num");
DEFINE_double(ipu_available_memory_proportion, 1.0,
              "available memory proportion");
DEFINE_bool(ipu_enable_half_partial, false, "enable half partial");

L
luotao1 已提交
91 92 93
namespace paddle {
namespace inference {

94
using paddle::framework::proto::VarType;
95
using float16 = paddle::platform::float16;
96

97 98 99 100 101 102 103 104 105 106 107 108 109
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

110
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
111
  const auto *analysis_config =
112
      reinterpret_cast<const AnalysisConfig *>(config);
113
  if (use_analysis) {
114
    LOG(INFO) << *analysis_config;
115 116
    return;
  }
117
  LOG(INFO) << analysis_config->ToNativeConfig();
118
}
Y
Yan Chunwei 已提交
119

120 121 122 123 124 125 126 127
void CheckError(float data_ref, float data) {
  if (std::abs(data_ref) > 1) {
    CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
  } else {
    CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
  }
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class Barrier {
 public:
  explicit Barrier(std::size_t count) : _count(count) {}
  void Wait() {
    std::unique_lock<std::mutex> lock(_mutex);
    if (--_count) {
      _cv.wait(lock, [this] { return _count == 0; });
    } else {
      _cv.notify_all();
    }
  }

 private:
  std::mutex _mutex;
  std::condition_variable _cv;
  std::size_t _count;
};

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
template <typename T>
class TensorReader {
 public:
  TensorReader(std::ifstream &file, size_t beginning_offset,
               std::vector<int> shape, std::string name)
      : file_(file), position_(beginning_offset), shape_(shape), name_(name) {
    numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
                             std::multiplies<size_t>());
  }

  PaddleTensor NextBatch() {
    PaddleTensor tensor;
    tensor.name = name_;
    tensor.shape = shape_;
    tensor.dtype = GetPaddleDType<T>();
    tensor.data.Resize(numel_ * sizeof(T));

    file_.seekg(position_);
    file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
    position_ = file_.tellg();

    if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
    if (file_.fail())
      throw std::runtime_error(name_ + ": failed reading file.");

    return tensor;
  }

 protected:
  std::ifstream &file_;
  size_t position_;
  std::vector<int> shape_;
  std::string name_;
  size_t numel_;
};

std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
    const std::vector<std::vector<PaddleTensor>> &test_data,
    int num_images = FLAGS_warmup_batch_size) {
  int test_data_batch_size = test_data[0][0].shape[0];
  auto iterations = test_data.size();
  auto all_test_data_size = iterations * test_data_batch_size;
  PADDLE_ENFORCE_LE(static_cast<size_t>(num_images), all_test_data_size,
                    platform::errors::InvalidArgument(
                        "The requested quantization warmup data size must be "
                        "lower or equal to the test data size. But received"
                        "warmup size is %d and test data size is %d. Please "
                        "use --warmup_batch_size parameter to set smaller "
                        "warmup batch size.",
                        num_images, all_test_data_size));

  PaddleTensor images;
  images.name = "image";
  images.shape = {num_images, 3, 224, 224};
  images.dtype = PaddleDType::FLOAT32;
  images.data.Resize(sizeof(float) * num_images * 3 * 224 * 224);

  PaddleTensor labels;
  labels.name = "label";
  labels.shape = {num_images, 1};
  labels.dtype = PaddleDType::INT64;
  labels.data.Resize(sizeof(int64_t) * num_images);

  for (int i = 0; i < num_images; i++) {
    auto batch = i / test_data_batch_size;
    auto element_in_batch = i % test_data_batch_size;
    std::copy_n(static_cast<float *>(test_data[batch][0].data.data()) +
                    element_in_batch * 3 * 224 * 224,
                3 * 224 * 224,
                static_cast<float *>(images.data.data()) + i * 3 * 224 * 224);
216 217 218 219
    if (FLAGS_with_accuracy_layer)
      std::copy_n(static_cast<int64_t *>(test_data[batch][1].data.data()) +
                      element_in_batch,
                  1, static_cast<int64_t *>(labels.data.data()) + i);
220
  }
221 222
  auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(
      FLAGS_with_accuracy_layer ? 2 : 1);
223
  (*warmup_data)[0] = std::move(images);
224
  if (FLAGS_with_accuracy_layer) (*warmup_data)[1] = std::move(labels);
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  return warmup_data;
}

void SetInputs(std::vector<std::vector<PaddleTensor>> *inputs,
               int32_t batch_size = FLAGS_batch_size) {
  std::ifstream file(FLAGS_infer_data, std::ios::binary);
  if (!file) {
    FAIL() << "Couldn't open file: " << FLAGS_infer_data;
  }

  int64_t total_images{0};
  file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
  LOG(INFO) << "Total images in file: " << total_images;

  std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
  std::vector<int> label_batch_shape{batch_size, 1};
  auto images_offset_in_file = static_cast<size_t>(file.tellg());
  auto labels_offset_in_file =
      images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224;

  TensorReader<float> image_reader(file, images_offset_in_file,
                                   image_batch_shape, "image");
  TensorReader<int64_t> label_reader(file, labels_offset_in_file,
                                     label_batch_shape, "label");

  auto iterations_max = total_images / batch_size;
  auto iterations = iterations_max;
  if (FLAGS_iterations > 0 && FLAGS_iterations < iterations_max) {
    iterations = FLAGS_iterations;
  }
  for (auto i = 0; i < iterations; i++) {
    auto images = image_reader.NextBatch();
257 258 259 260 261 262 263
    std::vector<PaddleTensor> tmp_vec;
    tmp_vec.push_back(std::move(images));
    if (FLAGS_with_accuracy_layer) {
      auto labels = label_reader.NextBatch();
      tmp_vec.push_back(std::move(labels));
    }
    inputs->push_back(std::move(tmp_vec));
264 265 266
  }
}

267
// Compare result between two PaddleTensor
L
luotao1 已提交
268
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
269
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
270
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
271
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
272 273
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
274
    auto &ref_out = ref_outputs[i];
275 276
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
277
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
278 279
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
280 281 282 283 284 285 286 287 288 289 290

#define COMPARE(paddle_type, type, func)                        \
  case paddle_type: {                                           \
    type *pdata = static_cast<type *>(out.data.data());         \
    type *pdata_ref = static_cast<type *>(ref_out.data.data()); \
    for (size_t j = 0; j < size; ++j) {                         \
      func(pdata_ref[j], pdata[j]);                             \
    }                                                           \
    break;                                                      \
  }

T
tensor-tang 已提交
291
    switch (out.dtype) {
292 293 294 295 296 297 298 299 300
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
L
luotao1 已提交
301
    }
302
#undef COMPARE
L
luotao1 已提交
303 304 305
  }
}

306 307 308 309 310 311 312 313 314 315 316 317
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
318 319 320 321 322 323 324 325 326 327 328 329

#define COMPARE(paddle_type, type, func)                     \
  case paddle_type: {                                        \
    type *pdata = static_cast<type *>(out.data.data());      \
    type *pdata_ref = ref_out.data<type>(&place, &ref_size); \
    EXPECT_EQ(size, static_cast<size_t>(ref_size));          \
    for (size_t j = 0; j < size; ++j) {                      \
      func(pdata_ref[j], pdata[j]);                          \
    }                                                        \
    break;                                                   \
  }

330
    switch (out.dtype) {
331 332 333 334 335 336 337 338 339
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
340
    }
341
#undef COMPARE
342 343 344
  }
}

345
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
346
    const PaddlePredictor::Config *config, bool use_analysis = true) {
347
  const auto *analysis_config =
348
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
349
  if (use_analysis) {
350
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
351
  }
352 353
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
354 355
}

356
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
357

358
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
359
                                                   int *num_ops) {
360
  std::unordered_map<std::string, int> res;
361
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
362 363 364 365 366 367
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
368 369 370 371
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
372 373
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
374 375 376 377
      ++num;
    }
  }
  *num_ops = num;
378
  return *fusion_status;
T
Tao Luo 已提交
379 380
}

T
Tao Luo 已提交
381
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
382 383
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
384
                       std::string params_filename = "params",
N
nhzlx 已提交
385 386
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
387
  // Set fake_image_data
388 389 390 391 392
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
                    platform::errors::InvalidArgument(
                        "In SetFakeImageInput, expected test_all_data = false, "
                        "but now test_all_data=",
                        FLAGS_test_all_data));
393 394 395 396 397 398 399 400 401 402 403
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
404
  if (feed_names) {
405 406 407 408 409 410 411
    PADDLE_ENFORCE_EQ(
        feed_names->size(), feed_target_shapes.size(),
        platform::errors::InvalidArgument(
            "The size of feeds_names and size of "
            "feed_target_shapes must be equal, but now feeds_names "
            "size is %d and feed_target_shapes size is %d",
            feed_names->size(), feed_target_shapes.size()));
T
tensor-tang 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
426
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
427 428 429 430 431 432
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
433 434
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
435
    }
T
Tao Luo 已提交
436 437 438 439
  }
  (*inputs).emplace_back(input_slots);
}

440 441 442 443 444 445 446 447 448 449 450 451
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
452 453 454 455 456 457 458 459 460 461 462
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
463 464
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
465 466
    } else if (input.dtype == PaddleDType::UINT8) {
      ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
L
luotao1 已提交
467 468 469 470 471
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
472

L
luotao1 已提交
473 474
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
475
                      std::vector<std::vector<PaddleTensor>> *outputs,
476 477
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
478 479 480 481 482
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
483 484
  int iterations = 1;
  if (FLAGS_warmup_iters > 1)
485 486
    iterations =
        (std::min)(FLAGS_warmup_iters, static_cast<int>(inputs.size()));
487
  outputs->resize(iterations);
L
luotao1 已提交
488
  Timer warmup_timer;
489
  double elapsed_time = 0;
L
luotao1 已提交
490
  if (!FLAGS_zero_copy) {
491 492 493 494 495
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->Run(inputs[i], &(*outputs)[i], batch_size);
      elapsed_time += warmup_timer.toc();
    }
L
luotao1 已提交
496
  } else {
497 498 499 500 501
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->ZeroCopyRun();
      elapsed_time += warmup_timer.toc();
    }
502
  }
503 504 505
  auto batch_latency = elapsed_time / iterations;
  PrintTime(batch_size, 1, num_threads, tid, batch_latency, iterations,
            data_type);
506
  if (FLAGS_enable_profile) {
L
luotao1 已提交
507 508 509
    paddle::platform::ResetProfiler();
  }
}
510

L
luotao1 已提交
511 512
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
513
                   std::vector<std::vector<PaddleTensor>> *outputs,
514
                   int num_threads, int tid,
515 516
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
517
  int num_times = FLAGS_repeat;
518
  int iterations = inputs.size();  // process the whole dataset ...
519 520
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
521 522 523 524 525
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
526 527
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
528
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
529
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
530
#endif
531
  int predicted_num = 0;
L
luotao1 已提交
532
  if (!FLAGS_zero_copy) {
533
    for (int i = 0; i < iterations; i++) {
534
      run_timer.tic();
L
luotao1 已提交
535
      for (int j = 0; j < num_times; j++) {
536
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
537
      }
538 539 540 541 542 543
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
544
    }
L
luotao1 已提交
545
  } else {
546
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
547 548 549 550 551 552
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
553 554 555 556 557

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
558 559
    }
  }
560

Y
Yiqun Liu 已提交
561
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
562
  ProfilerStop();
Y
Yiqun Liu 已提交
563
#endif
N
nhzlx 已提交
564

565 566
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
567
            iterations, data_type);
568 569 570 571

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
572 573 574
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
575 576
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
577
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
578 579 580
  }
}

L
luotao1 已提交
581 582 583
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
584
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
585 586
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
587
  auto predictor = CreateTestPredictor(config, use_analysis);
588
  if (FLAGS_warmup) {
589
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
590
  }
591 592
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
593 594
}

L
luotao1 已提交
595
void TestMultiThreadPrediction(
596
    const PaddlePredictor::Config *config,
597
    const std::vector<std::vector<PaddleTensor>> &inputs,
598
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
599
    bool use_analysis = true) {
L
luotao1 已提交
600
  std::vector<std::thread> threads;
L
luotao1 已提交
601 602 603 604 605
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
606

L
luotao1 已提交
607 608 609 610
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
611
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
612
      auto &predictor = predictors[tid];
613 614 615 616
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
617
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
618 619 620 621 622 623 624
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

625
void TestPrediction(const PaddlePredictor::Config *config,
626
                    const std::vector<std::vector<PaddleTensor>> &inputs,
627 628
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
629
  PrintConfig(config, use_analysis);
L
luotao1 已提交
630
  if (num_threads == 1) {
T
Tao Luo 已提交
631
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
632
  } else {
T
Tao Luo 已提交
633 634
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
635 636 637
  }
}

638 639 640
void SummarizeAccuracy(float avg_acc_ref, float avg_acc, int compared_idx) {
  std::string data_type_name = "INT8";
  if (FLAGS_enable_bf16) data_type_name = "BF16";
641 642 643 644 645 646 647 648 649 650 651 652 653 654
  PADDLE_ENFORCE_LE(
      compared_idx, 2,
      platform::errors::InvalidArgument(
          "The compared_idx should be <= 2. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
  PADDLE_ENFORCE_GE(
      compared_idx, 1,
      platform::errors::InvalidArgument(
          "The compared_idx should be >= 1. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
655
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
656
  LOG(INFO) << "--- Accuracy summary --- ";
657 658
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
659 660
            << ". (condition: (FP32_" << prefix << " - " << data_type_name
            << "_" << prefix << ") <= threshold)";
661
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
662 663 664
            << std::setprecision(4) << avg_acc_ref;
  LOG(INFO) << data_type_name << ": avg " << prefix << std::fixed
            << std::setw(6) << std::setprecision(4) << avg_acc;
665 666
}

667 668 669 670 671 672 673 674
void SummarizePerformance(const char *title, float sample) {
  CHECK_GT(sample, 0.0);
  auto throughput = 1000.0 / sample;
  LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput << ", avg latency: " << sample
            << " ms";
}

675 676
void SummarizePerformance(const char *title_fp32, float sample_latency_fp32,
                          const char *title, float sample_latency) {
677 678 679
  if (FLAGS_enable_fp32) SummarizePerformance(title_fp32, sample_latency_fp32);
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
    SummarizePerformance(title, sample_latency);
680 681
}

682 683
float CompareAccuracyOne(
    const std::vector<std::vector<PaddleTensor>> &output_slots,
684
    int compared_idx) {
685 686 687 688
  PADDLE_ENFORCE_GT(output_slots.size(), 0,
                    platform::errors::InvalidArgument(
                        "The accuracy vector is empty. The accuracy vector "
                        "size should be bigger than 0"));
689

690 691 692 693 694 695 696
  float total_accs{0};

  for (size_t i = 0; i < output_slots.size(); ++i) {
    switch (compared_idx) {
      case 1:
        PADDLE_ENFORCE_GE(
            output_slots[i].size(), 2UL,
697 698 699 700
            platform::errors::InvalidArgument(
                "To achieve top 1 accuracy, output_slots size "
                "must be bigger than or equal to 2, but now the size is %d",
                output_slots[i].size()));
701 702 703
        break;
      case 2:
        PADDLE_ENFORCE_GE(
704 705 706 707 708 709
            output_slots[i].size(), 3UL,
            platform::errors::InvalidArgument(
                "To achieve top 5 accuracy or mean Average "
                "Precision (mAP), output_slots size must be "
                "bigger than or equal to 3, but now the size is %d",
                output_slots[i].size()));
710 711 712 713
        break;
      default:
        throw std::invalid_argument(
            "CompareAccuracy: compared_idx is out of range.");
714 715
    }

716
    if (output_slots[i][compared_idx].lod.size() > 0)
717
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
718 719

    if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
720
      throw std::invalid_argument(
721
          "CompareAccuracy: output is of a wrong type.");
722 723 724

    total_accs +=
        *static_cast<float *>(output_slots[i][compared_idx].data.data());
725
  }
726 727 728 729 730 731 732 733

  return total_accs / output_slots.size();
}

void CompareAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
734
  if ((FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16)) &&
735 736 737 738 739 740 741
      (output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
    throw std::invalid_argument(
        "CompareAccuracy: output_slots vector is empty.");

  float avg_acc_quant = 0.0;
  float avg_acc_ref = 0.0;

742
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
743 744 745 746
    avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);

  if (FLAGS_enable_fp32)
    avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
747

748
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
749 750 751

  if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);

752
  if (FLAGS_enable_int8 || FLAGS_enable_bf16) CHECK_GT(avg_acc_quant, 0.0);
753

754
  if (FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16))
755
    CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
756 757
}

L
luotao1 已提交
758 759 760 761 762 763 764 765 766
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
767 768 769 770
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
771 772 773 774 775 776
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
777
void CompareNativeAndAnalysis(
778
    const PaddlePredictor::Config *config,
779
    const std::vector<std::vector<PaddleTensor>> &inputs) {
780
  PrintConfig(config, true);
781
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
782
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
783
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
784 785 786 787 788 789 790 791
  PADDLE_ENFORCE_GT(native_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The native outputs is empty. The native outputs "
                        "vector size must be bigger than 0"));
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The analysis outputs is empty. The analysis outputs "
                        "vector size must be bigger than 0"));
792
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
793 794
}

795
void CompareQuantizedAndAnalysis(
796
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
797 798
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
799 800 801 802 803 804
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
805 806 807 808 809 810 811
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
812
  float sample_latency_fp32{-1};
813 814 815 816 817

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }
818 819 820 821 822

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
823
  float sample_latency_int8{-1};
824

825 826 827 828
  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                            VarType::INT8, &sample_latency_int8);
  }
829 830
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
831

832 833
  if (FLAGS_with_accuracy_layer)
    CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
834 835
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
void CompareBFloat16AndAnalysis(
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
  LOG(INFO) << "FP32 & BF16 prediction run: batch_size " << FLAGS_batch_size;

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }

  LOG(INFO) << "--- BF16 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> bf16_outputs;
  float sample_latency_bf16{-1};

  if (FLAGS_enable_bf16) {
    TestOneThreadPrediction(qcfg, inputs, &bf16_outputs, true, VarType::FP32,
                            &sample_latency_bf16);
  }
  SummarizePerformance("FP32", sample_latency_fp32, "BF16",
                       sample_latency_bf16);

872 873
  if (FLAGS_with_accuracy_layer)
    CompareAccuracy(bf16_outputs, analysis_outputs, compared_idx);
874 875
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
void CompareAnalysisAndAnalysis(
    const AnalysisConfig *config1, const AnalysisConfig *config2,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));

  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
  PrintConfig(cfg1, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
                            VarType::FP32, &sample_latency_fp32);
  }

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
  PrintConfig(cfg2, true);
  std::vector<std::vector<PaddleTensor>> int8_outputs;
  float sample_latency_int8{-1};

  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
                            &sample_latency_int8);
  }
912 913
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
914 915 916 917 918
  if (with_accuracy_layer) {
    CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
  }
}

N
nhzlx 已提交
919 920 921 922 923 924 925 926 927 928
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

929
void CompareAnalysisAndZeroCopy(
930
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
931 932 933 934 935 936 937 938 939
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
940 941
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
942 943 944 945 946 947
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
948
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
949 950 951 952 953
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

954 955 956 957 958 959 960
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
1030 1031
  auto a_shape = phi::vectorize(a.dims());
  auto b_shape = phi::vectorize(b.dims());
1032
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
1033
                                  [](int a, int b) { return a * b; });
1034
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
1035 1036 1037 1038 1039 1040 1041
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
1042
    if (framework::TransToProtoVarType(a.dtype()) == VarType::FP32) {
L
luotao1 已提交
1043 1044 1045 1046 1047 1048 1049 1050
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
1051
    } else if (framework::TransToProtoVarType(a.dtype()) == VarType::INT64) {
L
luotao1 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
1071
  if (!CompareShape(phi::vectorize(a.dims()), phi::vectorize(b.dims()))) {
L
luotao1 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
void ConvertFP32toFP16(paddle::PaddleTensor &tensor  // NOLINT
                       ) {
  int num = 1;
  for (auto dim : tensor.shape) {
    num *= dim;
  }
  PADDLE_ENFORCE_EQ(
      tensor.dtype, PaddleDType::FLOAT32,
      platform::errors::InvalidArgument(
          "The tensor dtype is not float32, only support float32 as input"));
  float *fp32_data = reinterpret_cast<float *>(tensor.data.data());
  float16 *fp16_data = new float16[num];
  for (int i = 0; i < num; i++) {
    fp16_data[i] = float16(fp32_data[i]);
  }
  tensor.data =
      PaddleBuf(static_cast<void *>(fp16_data), num * sizeof(float16));
  tensor.dtype = PaddleDType::FLOAT16;
}

void ConvertFP16toFP32(paddle::PaddleTensor &tensor  // NOLINT
                       ) {
  int num = 1;
  for (auto dim : tensor.shape) {
    num *= dim;
  }
  PADDLE_ENFORCE_EQ(
      tensor.dtype, PaddleDType::FLOAT16,
      platform::errors::InvalidArgument(
          "The tensor dtype is not float16, only support float16 as input"));
  float16 *fp16_data = reinterpret_cast<float16 *>(tensor.data.data());
  float *fp32_data = new float[num];
  for (int i = 0; i < num; i++) {
    fp32_data[i] = static_cast<float>(fp16_data[i]);
  }
  tensor.data = PaddleBuf(static_cast<void *>(fp32_data), num * sizeof(float));
  tensor.dtype = PaddleDType::FLOAT32;
}

L
luotao1 已提交
1121 1122
}  // namespace inference
}  // namespace paddle