fake_quantize_op.cc 32.9 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
16
#include <algorithm>
视言's avatar
视言 已提交
17
#include <string>
18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/platform/transform.h"
视言's avatar
视言 已提交
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28 29
template <typename T>
struct Compare {
 public:
  bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
};
30 31 32 33 34

template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx, const T* in,
                  const int num, T* out) {
35
    *out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
36 37 38 39 40
  }
};

template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;

41 42
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in_tensor, const int quant_axis,
                  T* out_abs_max) {
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
    auto* in_data = in_tensor.data<T>();
    auto in_dims = in_tensor.dims();
    const int64_t channel = in_dims[quant_axis];
    if (quant_axis == 0) {
      const int64_t channel_size = in_tensor.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        out_abs_max[i] =
            std::abs(*(std::max_element(start, end, Compare<T>())));
      }
    } else if (quant_axis == 1) {
      for (int64_t i = 0; i < channel; i++) {
        out_abs_max[i] = 0;
      }
      const int64_t step_i = in_tensor.numel() / in_dims[0];
      const int64_t step_j = in_tensor.numel() / (in_dims[0] * in_dims[1]);
      for (int64_t i = 0; i < in_dims[0]; i++) {
        for (int64_t j = 0; j < in_dims[1]; j++) {
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          T abs_max = std::abs(*(std::max_element(start, end, Compare<T>())));
          out_abs_max[j] = std::max(out_abs_max[j], abs_max);
        }
      }
78 79 80 81 82 83
    }
  }
};

template struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, float>;

84 85 86 87 88 89
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
90
    T inv_s = inverse(s);
91 92 93 94
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto out_e = framework::EigenVector<T>::Flatten(*out);
95
    out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
96 97 98 99 100
  }
};

template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;

101 102 103 104 105 106
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
107 108
    T inv_s = inverse(s);

109 110 111 112 113
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto out_e = framework::EigenVector<T>::Flatten(*out);
    out_e.device(*ctx.eigen_device()) =
114
        (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
115 116 117 118 119
  }
};
template struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                               float>;

120 121 122 123
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
124
                  const int bin_cnt, const int quant_axis,
125
                  framework::Tensor* out) {
126 127 128 129 130 131 132
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
133 134 135
    auto* scale_data = scale.data<T>();
    auto* in_data = in.data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
136 137
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
138
    platform::Transform<platform::CPUDeviceContext> trans;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_data[i];
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        trans(ctx, start, end, out_data + i * channel_size,
              ClipFunctor<T>(-s, s));
      }
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_data[i];
        T inv_s = inverse(s);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
        out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          auto* cur_out_data = out_data + i * step_i + j * step_j;
          trans(ctx, start, end, cur_out_data, ClipFunctor<T>(-s, s));
          for (int k = 0; k < step_j; k++) {
            cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]);
          }
        }
      }
171 172 173 174 175 176
    }
  }
};

template struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext,
                                               float>;
H
huangxu96 已提交
177 178 179 180 181 182 183 184 185 186 187
template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, const int quant_axis,
                  framework::Tensor* out) {
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
188

H
huangxu96 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    auto* scale_data = scale.data<T>();
    auto* in_data = in.data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
    platform::Transform<platform::CPUDeviceContext> trans;
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        trans(ctx, start, end, out_data + i * channel_size,
              ClipFunctor<T>(-s, s));
      }
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
        T inv_s = inverse(s);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
        out_e.device(*ctx.eigen_device()) =
            (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          auto* cur_out_data = out_data + i * step_i + j * step_j;
          trans(ctx, start, end, cur_out_data, ClipFunctor<T>(-s, s));
          for (int k = 0; k < step_j; k++) {
            cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]) *
                              s / static_cast<T>(bin_cnt);
          }
        }
      }
    }
  }
};

template struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                                   float>;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
    T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
      FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
                                                         &max);
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in_accum,
                  const framework::Tensor& in_state, const T* cur_scale,
                  const float rate, framework::Tensor* out_state,
                  framework::Tensor* out_accum, framework::Tensor* out_scale) {
    T accum = in_accum.data<T>()[0];
    T state = in_state.data<T>()[0];
    T scale = cur_scale[0];

    state = rate * state + 1;
    accum = rate * accum + scale;
    scale = accum / state;

    out_state->mutable_data<T>(ctx.GetPlace())[0] = state;
    out_accum->mutable_data<T>(ctx.GetPlace())[0] = accum;
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = scale;
  }
};

template struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext,
                                               float>;

287
class FakeQuantOrWithDequantAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
288
 public:
289 290 291 292
  FakeQuantOrWithDequantAbsMaxOp(const std::string& type,
                                 const framework::VariableNameMap& inputs,
                                 const framework::VariableNameMap& outputs,
                                 const framework::AttributeMap& attrs)
视言's avatar
视言 已提交
293 294
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

295
  void InferShape(framework::InferShapeContext* ctx) const override {
296 297
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeQuantOrWithDequantAbsMaxOp");
298
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
299
                   "FakeQuantOrWithDequantAbsMaxOp");
300
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
301
                   "FakeQuantOrWithDequantAbsMaxOp");
视言's avatar
视言 已提交
302
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
303
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
304 305
    ctx->ShareLoD("X", /*->*/ "Out");
  }
306 307 308 309

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
310 311 312
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
313
  }
视言's avatar
视言 已提交
314 315
};

316 317
class FakeQuantOrWithDequantAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
318 319
 public:
  void Make() override {
320 321 322 323 324
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
325 326
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
327
        .AddCustomChecker([](const int& bit_length) {
328 329 330 331 332
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
视言's avatar
视言 已提交
333 334
        });
    AddComment(R"DOC(
335
This is a Base Op which supports FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
336
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
视言's avatar
视言 已提交
337

338
$$scale = max(abs(X))$$
339 340
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
341

342
FakeQuantDequantAbsMaxOp operator does the abs_max quantization and then dequantization.
343 344 345 346 347

$$scale = max(abs(X))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

348 349 350
)DOC");
  }
};
视言's avatar
视言 已提交
351

Z
Zhen Wang 已提交
352 353 354 355 356
class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
357 358 359 360 361 362
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeChannelWiseQuantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeChannelWiseQuantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeChannelWiseQuantizeAbsMax");
363
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
Z
Zhen Wang 已提交
364
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
365
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
Z
Zhen Wang 已提交
366 367 368 369 370 371
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
372 373
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
374 375 376 377 378 379 380 381 382 383 384
  }
};

class FakeChannelWiseQuantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
385
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
386 387 388 389 390 391 392 393 394 395 396 397
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
        .AddCustomChecker([](const int& quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
Z
Zhen Wang 已提交
398 399 400
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
401 402 403 404 405
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
Z
Zhen Wang 已提交
406 407 408 409 410 411
        });
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
Z
Zhen Wang 已提交
412 413
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
Z
Zhen Wang 已提交
414
In above three formulas, the range value of c is as follow:
Z
Zhen Wang 已提交
415
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
Z
Zhen Wang 已提交
416 417 418 419
)DOC");
  }
};

H
huangxu96 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
class FakeChannelWiseQuantizeDequantizeAbsMaxOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized and dequantized low level tensor, "
              "saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
        .AddCustomChecker([](const int& quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
        });
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c}) * \frac{scale_c} {range}$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
)DOC");
  }
};

489 490 491 492 493 494 495
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  FakeQuantizeRangeAbsMaxOp(const std::string& type,
                            const framework::VariableNameMap& inputs,
                            const framework::VariableNameMap& outputs,
                            const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
496

497
  void InferShape(framework::InferShapeContext* ctx) const override {
498 499 500 501 502
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FakeQuantizeRangeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeQuantizeRangeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeQuantizeRangeAbsMax");
503 504 505 506 507 508 509 510
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
511

512 513 514
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
515 516 517
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
518 519
  }
};
视言's avatar
视言 已提交
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
536 537 538 539 540
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
541
        });
542 543 544 545
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
546 547
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
548

549
$$scale = max(max(abs(x)), history_abs_max)$$
550 551
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
552 553 554 555 556

)DOC");
  }
};

557 558
class FakeQuantOrWithDequantMovingAverageAbsMaxOp
    : public framework::OperatorWithKernel {
559
 public:
560 561 562 563
  FakeQuantOrWithDequantMovingAverageAbsMaxOp(
      const std::string& type, const framework::VariableNameMap& inputs,
      const framework::VariableNameMap& outputs,
      const framework::AttributeMap& attrs)
564 565 566
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
567 568 569 570 571 572
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
573 574 575 576 577 578 579 580 581 582 583 584 585 586
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
587 588 589
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
590 591 592
  }
};

593
class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
610 611 612 613 614
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
615 616 617 618 619 620
        });
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
621
This is a Base Op which supports FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp.
622
FakeQuantMovingAverageAbsMaxOp operator is used in the static quantization.
623

Z
Zhen Wang 已提交
624 625
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
626 627
$$Out = round(X/scale * range)$$

628
FakeQuantDequantMovingAverageAbsMaxOp operator does the moving_average_abs_max quant and then dequant.
629 630 631 632 633

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

634 635 636 637
)DOC");
  }
};

Z
Zhen Wang 已提交
638 639 640 641 642
class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
643 644 645 646
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "MovingAverageAbsMaxScale");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "MovingAverageAbsMaxScale");
Z
Zhen Wang 已提交
647 648 649 650 651 652 653 654 655 656 657 658
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("OutScale", {1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
659 660
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  }
};

class MovingAverageAbsMaxScaleOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set true for inference only and false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
MovingAverageAbsMaxScale operator is only used for calculating the quantization scale.
And it will not quantize the input tensor.

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$Out = X$$

)DOC");
  }
};

691 692 693 694 695 696
class FakeQuantDequantGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
697
    auto x_grad_name = framework::GradVarName("X");
698 699
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "FakeQuantDequantGradOp");
700 701
    OP_INOUT_CHECK(ctx->HasOutput(x_grad_name), "Output", x_grad_name,
                   "FakeQuantDequantGradOp");
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim(out_grad_name));
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
class FakeQuantDequantGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("fake_quantize_dequantize_grad");
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

视言's avatar
视言 已提交
728 729 730 731
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
732 733
using CPU = paddle::platform::CPUDeviceContext;

H
hong 已提交
734
REGISTER_OPERATOR(
735 736
    fake_quantize_abs_max, ops::FakeQuantOrWithDequantAbsMaxOp,
    ops::FakeQuantOrWithDequantAbsMaxOpMaker,
H
hong 已提交
737 738
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
739 740
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
741

742 743 744 745 746 747 748 749
REGISTER_OPERATOR(fake_quantize_dequantize_abs_max,
                  ops::FakeQuantOrWithDequantAbsMaxOp,
                  ops::FakeQuantOrWithDequantAbsMaxOpMaker,
                  ops::FakeQuantDequantGradMaker<paddle::framework::OpDesc>,
                  ops::FakeQuantDequantGradMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(fake_quantize_dequantize_abs_max,
                       ops::FakeQuantizeDequantizeAbsMaxKernel<CPU, float>);

H
hong 已提交
750 751 752 753 754
REGISTER_OPERATOR(
    fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
    ops::FakeQuantizeRangeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
755 756
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
757

H
hong 已提交
758 759 760 761 762 763
REGISTER_OPERATOR(
    fake_quantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
764 765
REGISTER_OP_CPU_KERNEL(fake_quantize_moving_average_abs_max,
                       ops::FakeQuantizeMovingAverageAbsMaxKernel<CPU, float>);
766

767 768 769 770 771
REGISTER_OPERATOR(fake_quantize_dequantize_moving_average_abs_max,
                  ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
                  ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
                  ops::FakeQuantDequantGradMaker<paddle::framework::OpDesc>,
                  ops::FakeQuantDequantGradMaker<paddle::imperative::OpBase>);
772 773 774 775
REGISTER_OP_CPU_KERNEL(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CPU, float>);

H
hong 已提交
776 777 778 779 780
REGISTER_OPERATOR(
    fake_channel_wise_quantize_abs_max, ops::FakeChannelWiseQuantizeAbsMaxOp,
    ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
781 782
REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
                       ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
783

H
hong 已提交
784 785 786 787 788
REGISTER_OPERATOR(
    moving_average_abs_max_scale, ops::MovingAverageAbsMaxScaleOp,
    ops::MovingAverageAbsMaxScaleOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
789 790
REGISTER_OP_CPU_KERNEL(moving_average_abs_max_scale,
                       ops::MovingAverageAbsMaxScaleKernel<CPU, float>);
791 792 793 794

REGISTER_OPERATOR(fake_quantize_dequantize_grad, ops::FakeQuantDequantGradOp);
REGISTER_OP_CPU_KERNEL(fake_quantize_dequantize_grad,
                       ops::FakeQuantDequantGradKernel<CPU, float>);
H
huangxu96 已提交
795 796 797 798 799 800 801 802 803

REGISTER_OPERATOR(fake_channel_wise_quantize_dequantize_abs_max,
                  ops::FakeChannelWiseQuantizeDequantizeAbsMaxOp,
                  ops::FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker,
                  ops::FakeQuantDequantGradMaker<paddle::framework::OpDesc>,
                  ops::FakeQuantDequantGradMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxKernel<CPU, float>);