fake_quantize_op.cc 8.4 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
#include <string>
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/platform/transform.h"
视言's avatar
视言 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28
template <typename T>
struct Compare {
 public:
  bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
};
29 30 31 32 33

template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx, const T* in,
                  const int num, T* out) {
34
    *out = *(std::max_element(in + 0, in + num, Compare<T>()));
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  }
};

template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;

template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto in_e = framework::EigenVector<T>::Flatten(in);
    auto out_e = framework::EigenVector<T>::Flatten(*out);

    out_e.device(*ctx.eigen_device()) = (bin_cnt / s * in_e).round();
  }
};

template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;

template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
    T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
      FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
                                                         &max);
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;

class FakeQuantizeAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
87
 public:
88 89 90 91
  FakeQuantizeAbsMaxOp(const std::string& type,
                       const framework::VariableNameMap& inputs,
                       const framework::VariableNameMap& outputs,
                       const framework::AttributeMap& attrs)
视言's avatar
视言 已提交
92 93
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

94
  void InferShape(framework::InferShapeContext* ctx) const override {
视言's avatar
视言 已提交
95 96 97 98
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantizeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of FakeQuantizeOp should not be null.");
99 100
    PADDLE_ENFORCE(ctx->HasOutput("OutScale"),
                   "Output(Scale) of FakeQuantizeOp should not be null.");
视言's avatar
视言 已提交
101
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
102
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
103 104
    ctx->ShareLoD("X", /*->*/ "Out");
  }
105 106 107 108

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
109 110
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
111
  }
视言's avatar
视言 已提交
112 113
};

114
class FakeQuantizeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
115 116
 public:
  void Make() override {
117 118 119 120 121
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
122 123
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
124
        .AddCustomChecker([](const int& bit_length) {
视言's avatar
视言 已提交
125 126 127 128 129 130
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
    AddComment(R"DOC(
FakeQuantize operator

131
$$scale = max(abs(X))$$
132 133
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
134

135 136 137
)DOC");
  }
};
视言's avatar
视言 已提交
138

139 140 141 142 143 144 145
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  FakeQuantizeRangeAbsMaxOp(const std::string& type,
                            const framework::VariableNameMap& inputs,
                            const framework::VariableNameMap& outputs,
                            const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantizeRangeAbsMaxOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FakeQuantizeRangeAbsMaxOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("OutScale"),
        "Output(OutScale) of FakeQuantizeRangeAbsMaxOp should not be null");
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
164

165 166 167
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
168 169
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
170 171
  }
};
视言's avatar
视言 已提交
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
191 192 193 194
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
195 196
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
197

198
$$scale = max(max(abs(x)), history_abs_max)$$
199 200
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
201 202 203 204 205 206 207 208 209

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
210 211 212 213 214 215 216
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(fake_quantize_abs_max, ops::FakeQuantizeAbsMaxOp,
                  ops::FakeQuantizeAbsMaxOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
217

218 219
REGISTER_OPERATOR(fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
                  ops::FakeQuantizeRangeAbsMaxOpMaker,
视言's avatar
视言 已提交
220
                  paddle::framework::EmptyGradOpMaker);
221 222
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);