fake_quantize_op.cc 8.9 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
#include <string>
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/platform/transform.h"
视言's avatar
视言 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVectorArrayMap =
    Eigen::TensorMap<Eigen::Tensor<T, 1, MajorType, IndexType>>;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using ConstEigenVectorArrayMap =
    Eigen::TensorMap<const Eigen::Tensor<T, 1, MajorType, IndexType>>;

template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx, const T* in,
                  const int num, T* out) {
    Eigen::DSizes<Eigen::DenseIndex, 1> idim(num);
    Eigen::DSizes<Eigen::DenseIndex, 1> odim(1);
    Eigen::TensorMap<Eigen::Tensor<const T, 1, Eigen::RowMajor>> in_e(in, idim);
    Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor>> out_e(out, odim);

    out_e = in_e.abs().maximum();
  }
};

template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;

template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto in_e = framework::EigenVector<T>::Flatten(in);
    auto out_e = framework::EigenVector<T>::Flatten(*out);

    out_e.device(*ctx.eigen_device()) = (bin_cnt / s * in_e).round();
  }
};

template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;

template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
    T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
      FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
                                                         &max);
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;

class FakeQuantizeAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
96
 public:
97 98 99 100
  FakeQuantizeAbsMaxOp(const std::string& type,
                       const framework::VariableNameMap& inputs,
                       const framework::VariableNameMap& outputs,
                       const framework::AttributeMap& attrs)
视言's avatar
视言 已提交
101 102
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

103
  void InferShape(framework::InferShapeContext* ctx) const override {
视言's avatar
视言 已提交
104 105 106 107
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantizeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of FakeQuantizeOp should not be null.");
108 109
    PADDLE_ENFORCE(ctx->HasOutput("OutScale"),
                   "Output(Scale) of FakeQuantizeOp should not be null.");
视言's avatar
视言 已提交
110
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
111
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
112 113
    ctx->ShareLoD("X", /*->*/ "Out");
  }
114 115 116 117

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
118 119
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
120
  }
视言's avatar
视言 已提交
121 122
};

123
class FakeQuantizeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
124 125
 public:
  void Make() override {
126 127 128 129 130
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
131 132
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
133
        .AddCustomChecker([](const int& bit_length) {
视言's avatar
视言 已提交
134 135 136 137 138 139
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
    AddComment(R"DOC(
FakeQuantize operator

140
$$scale = max(abs(X))$$
141 142
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
143

144 145 146
)DOC");
  }
};
视言's avatar
视言 已提交
147

148 149 150 151 152 153 154
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  FakeQuantizeRangeAbsMaxOp(const std::string& type,
                            const framework::VariableNameMap& inputs,
                            const framework::VariableNameMap& outputs,
                            const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantizeRangeAbsMaxOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FakeQuantizeRangeAbsMaxOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("OutScale"),
        "Output(OutScale) of FakeQuantizeRangeAbsMaxOp should not be null");
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
173

174 175 176
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
177 178
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
179 180
  }
};
视言's avatar
视言 已提交
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
200 201 202 203
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
204 205
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
206

207
$$scale = max(max(abs(x)), history_abs_max)$$
208 209
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
210 211 212 213 214 215 216 217 218

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
219 220 221 222 223 224 225
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(fake_quantize_abs_max, ops::FakeQuantizeAbsMaxOp,
                  ops::FakeQuantizeAbsMaxOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
226

227 228
REGISTER_OPERATOR(fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
                  ops::FakeQuantizeRangeAbsMaxOpMaker,
视言's avatar
视言 已提交
229
                  paddle::framework::EmptyGradOpMaker);
230 231
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);