fake_quantize_op.cc 21.1 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
#include <string>
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/platform/transform.h"
视言's avatar
视言 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28
template <typename T>
struct Compare {
 public:
  bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
};
29 30 31 32 33

template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx, const T* in,
                  const int num, T* out) {
34
    *out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
35 36 37 38 39
  }
};

template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx, const T* in,
                  const int num, const int channel, T* out) {
    const int channel_size = num / channel;
    for (int i = 0; i < channel; i++) {
      auto* start = in + i * channel_size;
      auto* end = in + (i + 1) * channel_size;
      out[i] = std::abs(*(std::max_element(start, end, Compare<T>())));
    }
  }
};

template struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, float>;

55 56 57 58 59 60 61 62 63 64
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto out_e = framework::EigenVector<T>::Flatten(*out);
65
    out_e.device(*ctx.eigen_device()) = (bin_cnt / s * out_e).round();
66 67 68 69 70
  }
};

template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto out_e = framework::EigenVector<T>::Flatten(*out);
    out_e.device(*ctx.eigen_device()) =
        (s / bin_cnt) * (bin_cnt / s * out_e).round();
  }
};
template struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                               float>;

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, const int channel,
                  framework::Tensor* out) {
    auto* scale_data = scale.data<T>();
    auto* in_data = in.data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
    const int channel_size = in.numel() / channel;
    platform::Transform<platform::CPUDeviceContext> trans;
    for (int i = 0; i < channel; i++) {
      T s = scale_data[i];
      auto* start = in_data + i * channel_size;
      auto* end = in_data + (i + 1) * channel_size;
      trans(ctx, start, end, out_data + i * channel_size,
            ClipFunctor<T>(-s, s));
    }
    for (int i = 0; i < channel; i++) {
      T s = scale_data[i];
      framework::Tensor one_channel_out = out->Slice(i, i + 1);
      auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
      out_e.device(*ctx.eigen_device()) = (bin_cnt / s * out_e).round();
    }
  }
};

template struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext,
                                               float>;

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
    T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
      FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
                                                         &max);
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in_accum,
                  const framework::Tensor& in_state, const T* cur_scale,
                  const float rate, framework::Tensor* out_state,
                  framework::Tensor* out_accum, framework::Tensor* out_scale) {
    T accum = in_accum.data<T>()[0];
    T state = in_state.data<T>()[0];
    T scale = cur_scale[0];

    state = rate * state + 1;
    accum = rate * accum + scale;
    scale = accum / state;

    out_state->mutable_data<T>(ctx.GetPlace())[0] = state;
    out_accum->mutable_data<T>(ctx.GetPlace())[0] = accum;
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = scale;
  }
};

template struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext,
                                               float>;

170
class FakeQuantizeAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
171
 public:
172 173 174 175
  FakeQuantizeAbsMaxOp(const std::string& type,
                       const framework::VariableNameMap& inputs,
                       const framework::VariableNameMap& outputs,
                       const framework::AttributeMap& attrs)
视言's avatar
视言 已提交
176 177
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

178
  void InferShape(framework::InferShapeContext* ctx) const override {
视言's avatar
视言 已提交
179 180 181 182
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantizeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of FakeQuantizeOp should not be null.");
183 184
    PADDLE_ENFORCE(ctx->HasOutput("OutScale"),
                   "Output(Scale) of FakeQuantizeOp should not be null.");
视言's avatar
视言 已提交
185
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
186
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
187 188
    ctx->ShareLoD("X", /*->*/ "Out");
  }
189 190 191 192

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
193 194 195
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
196
  }
视言's avatar
视言 已提交
197 198
};

199
class FakeQuantizeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
200 201
 public:
  void Make() override {
202 203 204 205 206
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
207 208
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
209
        .AddCustomChecker([](const int& bit_length) {
视言's avatar
视言 已提交
210 211 212 213 214 215
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
    AddComment(R"DOC(
FakeQuantize operator

216
$$scale = max(abs(X))$$
217 218
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
219

220 221 222
)DOC");
  }
};
视言's avatar
视言 已提交
223

Z
Zhen Wang 已提交
224 225 226 227 228 229 230 231 232 233 234
class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeChannelWiseQuantizeOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FakeChannelWiseQuantizeOp should not be null.");
    PADDLE_ENFORCE(
235 236
        ctx->HasOutput("OutScale"),
        "Output(Scale) of FakeChannelWiseQuantizeOp should not be null.");
Z
Zhen Wang 已提交
237
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
238
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[0]});
Z
Zhen Wang 已提交
239 240 241 242 243 244
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
245 246
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
247 248 249 250 251 252 253 254 255 256 257
  }
};

class FakeChannelWiseQuantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
258
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
Z
Zhen Wang 已提交
259 260 261 262 263 264 265 266 267 268 269
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
Z
Zhen Wang 已提交
270 271
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
Z
Zhen Wang 已提交
272
In above three formulas, the range value of c is as follow:
Z
Zhen Wang 已提交
273
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
Z
Zhen Wang 已提交
274 275 276 277
)DOC");
  }
};

278 279 280 281 282 283 284
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  FakeQuantizeRangeAbsMaxOp(const std::string& type,
                            const framework::VariableNameMap& inputs,
                            const framework::VariableNameMap& outputs,
                            const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantizeRangeAbsMaxOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FakeQuantizeRangeAbsMaxOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("OutScale"),
        "Output(OutScale) of FakeQuantizeRangeAbsMaxOp should not be null");
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
303

304 305 306
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
307 308 309
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
310 311
  }
};
视言's avatar
视言 已提交
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
331 332 333 334
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
335 336
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
337

338
$$scale = max(max(abs(x)), history_abs_max)$$
339 340
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
341 342 343 344 345

)DOC");
  }
};

346 347
class FakeQuantOrWithDequantMovingAverageAbsMaxOp
    : public framework::OperatorWithKernel {
348
 public:
349 350 351 352
  FakeQuantOrWithDequantMovingAverageAbsMaxOp(
      const std::string& type, const framework::VariableNameMap& inputs,
      const framework::VariableNameMap& outputs,
      const framework::AttributeMap& attrs)
353 354 355
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
356 357 358 359 360 361
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantOrWithDequantMovingAverageAbsMaxOp "
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of FakeQuantOrWithDequantMovingAverageAbsMaxOp "
                   "should not be null.");
362
    PADDLE_ENFORCE(
363 364 365
        ctx->HasOutput("OutScale"),
        "Output(OutScale) of FakeQuantOrWithDequantMovingAverageAbsMaxOp "
        "should not be null");
366 367 368 369 370 371 372 373 374 375 376 377 378 379
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
380 381 382
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
383 384 385
  }
};

386
class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
411 412
This is a Base Op which support FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp
FakeQuantMovingAverageAbsMaxOp operator is used in static quantization.
413

Z
Zhen Wang 已提交
414 415
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
416 417
$$Out = round(X/scale * range)$$

418 419 420 421 422 423
FakeQuantDequantMovingAverageAbsMaxOp operator do the moving_average_abs_max op quant and then dequant.

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

424 425 426 427
)DOC");
  }
};

Z
Zhen Wang 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasInput("X"),
        "Input(X) of MovingAverageAbsMaxScaleOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of MovingAverageAbsMaxScaleOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("OutScale"),
                   "Output(OutScale) of MovingAverageAbsMaxScaleOp"
                   "should not be null");
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
456 457
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
  }
};

class MovingAverageAbsMaxScaleOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("Out",
              "(Tensor) Output tensor is just equivalent to the input tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set true for inference only and false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
MovingAverageAbsMaxScale operator is only used for calculating the quantization scale.
And it will not quantize the input tensor.

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$Out = X$$

)DOC");
  }
};

视言's avatar
视言 已提交
490 491 492 493
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
494 495
using CPU = paddle::platform::CPUDeviceContext;

H
hong 已提交
496 497 498 499 500
REGISTER_OPERATOR(
    fake_quantize_abs_max, ops::FakeQuantizeAbsMaxOp,
    ops::FakeQuantizeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
501 502
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
503

H
hong 已提交
504 505 506 507 508
REGISTER_OPERATOR(
    fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
    ops::FakeQuantizeRangeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
509 510
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
511

H
hong 已提交
512 513 514 515 516 517
REGISTER_OPERATOR(
    fake_quantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
518

519 520
REGISTER_OP_CPU_KERNEL(fake_quantize_moving_average_abs_max,
                       ops::FakeQuantizeMovingAverageAbsMaxKernel<CPU, float>);
521

H
hong 已提交
522 523 524 525 526 527
REGISTER_OPERATOR(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
528 529 530 531
REGISTER_OP_CPU_KERNEL(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CPU, float>);

H
hong 已提交
532 533 534 535 536
REGISTER_OPERATOR(
    fake_channel_wise_quantize_abs_max, ops::FakeChannelWiseQuantizeAbsMaxOp,
    ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
537 538
REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
                       ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
539

H
hong 已提交
540 541 542 543 544
REGISTER_OPERATOR(
    moving_average_abs_max_scale, ops::MovingAverageAbsMaxScaleOp,
    ops::MovingAverageAbsMaxScaleOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
545 546
REGISTER_OP_CPU_KERNEL(moving_average_abs_max_scale,
                       ops::MovingAverageAbsMaxScaleKernel<CPU, float>);