fake_quantize_op.cc 10.7 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
#include <string>
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/platform/transform.h"
视言's avatar
视言 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28
template <typename T>
struct Compare {
 public:
  bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
};
29 30 31 32 33

template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx, const T* in,
                  const int num, T* out) {
34
    *out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
  }
};

template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;

template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto out_e = framework::EigenVector<T>::Flatten(*out);
50
    out_e.device(*ctx.eigen_device()) = (bin_cnt / s * out_e).round();
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  }
};

template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;

template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
    T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
      FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
                                                         &max);
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;

class FakeQuantizeAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
85
 public:
86 87 88 89
  FakeQuantizeAbsMaxOp(const std::string& type,
                       const framework::VariableNameMap& inputs,
                       const framework::VariableNameMap& outputs,
                       const framework::AttributeMap& attrs)
视言's avatar
视言 已提交
90 91
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

92
  void InferShape(framework::InferShapeContext* ctx) const override {
视言's avatar
视言 已提交
93 94 95 96
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantizeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of FakeQuantizeOp should not be null.");
97 98
    PADDLE_ENFORCE(ctx->HasOutput("OutScale"),
                   "Output(Scale) of FakeQuantizeOp should not be null.");
视言's avatar
视言 已提交
99
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
100
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
101 102
    ctx->ShareLoD("X", /*->*/ "Out");
  }
103 104 105 106

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
107 108
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
109
  }
视言's avatar
视言 已提交
110 111
};

112
class FakeQuantizeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
113 114
 public:
  void Make() override {
115 116 117 118 119
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
120 121
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
122
        .AddCustomChecker([](const int& bit_length) {
视言's avatar
视言 已提交
123 124 125 126 127 128
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
    AddComment(R"DOC(
FakeQuantize operator

129
$$scale = max(abs(X))$$
130 131
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
132

133 134 135
)DOC");
  }
};
视言's avatar
视言 已提交
136

Z
Zhen Wang 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeChannelWiseQuantizeOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FakeChannelWiseQuantizeOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("OutScales"),
        "Output(Scales) of FakeChannelWiseQuantizeOp should not be null.");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScales", {ctx->GetInputDim("X")[0]});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.GetPlace());
  }
};

class FakeChannelWiseQuantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScales", "(Tensor) Current channel wise scale");
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
$$range = 2^{bit_length - 1} - 1$$
$$Out_c = round(X_c / scale_c * range)$$

In above three formulas, the range value of c is as follow:
$$0 \leq c \leq \ the\ channel\ number\ of\ X$$
)DOC");
  }
};

192 193 194 195 196 197 198
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  FakeQuantizeRangeAbsMaxOp(const std::string& type,
                            const framework::VariableNameMap& inputs,
                            const framework::VariableNameMap& outputs,
                            const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeQuantizeRangeAbsMaxOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FakeQuantizeRangeAbsMaxOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("OutScale"),
        "Output(OutScale) of FakeQuantizeRangeAbsMaxOp should not be null");
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
217

218 219 220
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
221 222
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
223 224
  }
};
视言's avatar
视言 已提交
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
                         "'bit_length' should be between 1 and 16.");
        });
244 245 246 247
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
248 249
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
250

251
$$scale = max(max(abs(x)), history_abs_max)$$
252 253
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
254 255 256 257 258 259 260 261 262

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
263 264 265 266 267 268 269
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(fake_quantize_abs_max, ops::FakeQuantizeAbsMaxOp,
                  ops::FakeQuantizeAbsMaxOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
270

271 272
REGISTER_OPERATOR(fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
                  ops::FakeQuantizeRangeAbsMaxOpMaker,
视言's avatar
视言 已提交
273
                  paddle::framework::EmptyGradOpMaker);
274 275
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
276 277 278 279 280 281 282

REGISTER_OPERATOR(fake_channel_wise_quantize_abs_max,
                  ops::FakeChannelWiseQuantizeAbsMaxOp,
                  ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
                       ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);