pybind.cc 55.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/garbage_collector.h"
28
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
29 30 31
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
32
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
35
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
38
#include "paddle/fluid/framework/version.h"
39
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
40
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
42
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
43
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/platform/enforce.h"
48
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
51
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
54
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
56
#include "paddle/fluid/pybind/ir.h"
57 58
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
59
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
61
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
62

63
#include "paddle/fluid/string/to_string.h"
64

D
Dong Zhihong 已提交
65
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
66
#ifndef _WIN32
Y
Yi Wang 已提交
67
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
68
#endif
Y
Yi Wang 已提交
69 70
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
71 72
#endif

M
minqiyang 已提交
73 74
#include "pybind11/stl.h"

75 76 77 78
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
79 80 81
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

82
namespace paddle {
83
namespace pybind {
84
bool IsCompiledWithCUDA() {
85
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
86 87 88 89 90 91
  return false;
#else
  return true;
#endif
}

92 93 94 95 96 97 98 99
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

100 101 102 103 104 105 106 107
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

108
bool IsCompiledWithBrpc() {
109
#ifndef PADDLE_WITH_DISTRIBUTE
110 111
  return false;
#endif
112 113 114 115 116 117

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
118 119
}

Y
update  
Yancey1989 已提交
120
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
121
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
122 123 124 125 126 127
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
128 129 130 131 132
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

S
sneaxiy 已提交
133 134 135 136 137
template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

138
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
139 140 141
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
142
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
143

144
  m.doc() = "C++ core of PaddlePaddle";
145

146 147 148 149
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

150
  BindException(&m);
Y
Yu Yang 已提交
151

S
sneaxiy 已提交
152
  m.def(
S
sneaxiy 已提交
153
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
154 155 156 157
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
158 159 160
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
161
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
162

S
sneaxiy 已提交
163 164 165
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

166 167 168 169 170 171 172
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
173
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
174 175
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
176
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
177

M
minqiyang 已提交
178
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
179 180 181 182 183 184 185 186
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
187
      .def("_run_backward",
X
Xin Pan 已提交
188
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
189
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
190
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
191
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
192
      .def("_grad_ivar",
M
minqiyang 已提交
193
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
194
           py::return_value_policy::reference)
M
minqiyang 已提交
195
      .def("_copy_to",
P
Paddle CI 已提交
196
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
197 198 199 200 201
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
202
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
203
      .def("_copy_to",
P
Paddle CI 已提交
204
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
205 206 207 208 209
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
210
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
211
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
212
           py::return_value_policy::reference)
213 214 215
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
216
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
217 218 219 220
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
221

222
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
223
      .def(py::init<const std::string &>())
224 225 226 227
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
228 229 230 231 232 233 234 235 236 237
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
238 239 240 241 242 243
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
244 245 246 247 248 249 250
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
251 252
          py::return_value_policy::reference);

X
Xin Pan 已提交
253
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
254
  layer.def(py::init<>())
X
Xin Pan 已提交
255 256 257
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
258
      });
X
Xin Pan 已提交
259

X
polish  
Xin Pan 已提交
260
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
261
      .def(py::init<>())
X
Xin Pan 已提交
262 263
      .def_static(
          "apply",
X
Xin Pan 已提交
264
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
265
              -> std::vector<imperative::VarBase *> {
266 267 268 269 270 271 272 273 274 275 276
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
277 278
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
279 280 281 282 283
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
284

285 286
  BindTracer(&m);

287 288 289
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
S
sneaxiy 已提交
290 291
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
292
      .def("_get_dims",
293
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
294
      .def("_set_dims",
Q
qijun 已提交
295
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
296
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
297
           })
Y
yuyang18 已提交
298
      .def("_set_layout",
D
dzhwinter 已提交
299 300 301
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
302
      .def("_alloc_float",
D
dzhwinter 已提交
303
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
304
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
305
           })
Y
yuyang18 已提交
306
      .def("_alloc_float",
Y
Yu Yang 已提交
307
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
308
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
309
           })
Y
yuyang18 已提交
310
      .def("_alloc_int",
Y
Yu Yang 已提交
311
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
312
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
313
           })
Y
yuyang18 已提交
314
      .def("_alloc_int",
D
dzhwinter 已提交
315
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
316
             self.mutable_data<int>(place);
Q
qijun 已提交
317
           })
Y
yuyang18 已提交
318
      .def("_alloc_int",
C
chengduoZH 已提交
319 320 321
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
322
      .def("_alloc_float",
C
chengduoZH 已提交
323 324 325
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
326 327
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
328
      .def("set", PyCPUTensorSetFromArray<double>)
329
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
330
      .def("set", PyCPUTensorSetFromArray<bool>)
331
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
332
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
333
      .def("set", PyCPUTensorSetFromArray<int8_t>)
334
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
335 336
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
337
      .def("set", PyCUDATensorSetFromArray<double>)
338
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
339
      .def("set", PyCUDATensorSetFromArray<bool>)
340
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
341
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
342
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
343 344 345 346 347 348
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
349
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
350
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
351
#endif
352
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
353 354 355 356
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
357
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
358
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
359

X
Xin Pan 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
373
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
374
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
375
     columns, hence [5, 2].
X
Xin Pan 已提交
376 377 378

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
379 380
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
404 405
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
406 407 408 409 410 411 412 413 414 415 416 417 418 419
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
420
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
421 422 423 424 425
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
426
      .def("set_lod",
427
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
428
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
429
             LoD new_lod;
430 431
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
432 433
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
434
             self.set_lod(new_lod);
S
sneaxiy 已提交
435 436 437 438 439 440 441
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
457 458 459 460
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
461
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
462 463
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
464 465

           Args:
466
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
467
           )DOC")
468 469 470 471 472 473 474 475
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
476 477 478 479 480 481 482
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
483
      // Set above comments of set_lod.
484 485 486 487 488 489 490 491
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
492 493 494 495 496
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
497
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
511

Q
qijun 已提交
512 513 514 515 516 517 518 519 520 521 522
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
523 524
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
525 526
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
527 528 529 530 531 532 533 534 535
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
536
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
537
      .def("rows", [](SelectedRows &self) {
538 539 540 541 542
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
543
      });
Q
qijun 已提交
544

545
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
546 547 548

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
549
      .def(py::init<>())
550
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
551
      .def("set_int",
552 553
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
554 555 556 557 558 559 560
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
561
      .def("get_tensor",
562 563
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
564 565
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
566 567 568
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
569 570 571 572 573
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
574 575 576
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
577
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
578 579 580 581 582
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
583
#endif
Y
Refine  
Yu Yang 已提交
584 585 586 587 588
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
589
           py::return_value_policy::reference);
590

S
sneaxiy 已提交
591
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
592

S
sneaxiy 已提交
593 594 595 596
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
597

S
sneaxiy 已提交
598 599
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
600
      .def("push",
S
sneaxiy 已提交
601
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
602
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
603
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
604
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
605
           })
S
sneaxiy 已提交
606 607 608 609
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
610

S
sneaxiy 已提交
611
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
612 613 614 615 616 617
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
618
        py::return_value_policy::copy);
S
sneaxiy 已提交
619

S
sneaxiy 已提交
620
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
640 641
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
642
      .def("var",
643
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
644
             return self.Var(name);
Y
Yu Yang 已提交
645
           },
S
sneaxiy 已提交
646 647
           py::arg("name"),
           R"DOC(
648
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
649

650
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
651
           current scope, the variable would be created. Otherwise,
652
           return the existing variable.
S
sneaxiy 已提交
653 654

           Args:
655 656
               name (str): the variable name.

S
sneaxiy 已提交
657
           Returns:
658
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
659 660 661 662
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
663
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
664
           its parent scope. Return None if not found.
665

S
sneaxiy 已提交
666 667
           Args:
               name (str): the variable name.
668

S
sneaxiy 已提交
669
           Returns:
670
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
671
           )DOC",
672
           py::return_value_policy::reference)
673
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
674 675 676 677 678 679
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
680
           py::return_value_policy::reference)
S
sneaxiy 已提交
681 682 683
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
684 685
           )DOC")
      .def("_kids", &Scope::kids);
686

S
sneaxiy 已提交
687 688 689 690 691 692
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
693 694
        R"DOC(
        Create a new scope.
695

S
sneaxiy 已提交
696 697 698
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
699 700
        py::return_value_policy::reference);

Y
Yu Yang 已提交
701 702
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
703 704
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
705 706 707 708 709 710 711 712 713 714
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
715 716
    return ret_values;
  });
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
733
  m.def("prune", [](const ProgramDesc &origin,
734
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
735
    ProgramDesc prog_with_targets(origin);
736
    for (const auto &t : targets) {
737
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
738
    }
739
    proto::ProgramDesc pruned_desc;
740
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
741
    return new ProgramDesc(pruned_desc);
742
  });
743 744 745 746
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
747 748 749
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
750 751
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
752
  // clang-format off
Y
Yu Yang 已提交
753
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
754 755
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
756
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
757 758 759
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
760
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
761
                      -> paddle::platform::DeviceContext* {
762
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
763
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
764
#else
Q
qijun 已提交
765
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
766
#endif
C
chengduoZH 已提交
767 768 769 770 771 772 773 774 775 776 777
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
778
// clang-format on
P
peizhilin 已提交
779
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
780 781
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
782
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
783 784 785 786 787 788 789 790 791 792 793 794
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
795
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
S
sneaxiy 已提交
796 797 798 799 800
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
801
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
802

803 804
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
805
      .def("_type", &PlaceIndex<platform::CPUPlace>)
S
sneaxiy 已提交
806 807 808 809 810
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
811
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
812

C
chengduoZH 已提交
813
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
814
      .def("__init__",
S
sneaxiy 已提交
815
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
816 817 818
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
819
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
820
           })
S
sneaxiy 已提交
821
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
S
sneaxiy 已提交
822 823 824 825 826 827 828
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
829 830
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
831 832
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
833
      .def("_type", &PlaceIndex<platform::Place>)
S
sneaxiy 已提交
834 835 836 837
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
838 839
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
840 841 842 843 844 845
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
846 847 848 849
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
850 851
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
852 853 854 855 856
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
857
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
858
             self = gpu_place;
C
chengduoZH 已提交
859 860
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
861 862
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
863
      });
Y
Yu Yang 已提交
864

Y
Yu Yang 已提交
865 866 867
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
868
                    proto::OpDesc desc;
Y
Yu Yang 已提交
869 870 871 872 873
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
874
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
875
                  })
876
      .def("run",
877
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
878 879 880
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
881
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
882 883 884 885 886
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
887 888 889 890 891 892 893
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
894 895
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
896
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
897
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
898 899 900 901
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
902

F
fengjiayi 已提交
903
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
904
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
905
      .def("close", &Executor::Close)
S
sneaxiy 已提交
906
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
907 908
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
909
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
910 911
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
912
      });
S
sneaxiy 已提交
913

D
dzhwinter 已提交
914
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
915
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
916 917
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
918

919
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
920
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
921
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
922
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
923
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
924 925 926 927 928 929
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
930

931
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
932
  m.def("get_fetch_variable", framework::GetFetchVariable);
933
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
934

X
Xin Pan 已提交
935 936
  m.def("_is_program_version_supported", IsProgramVersionSupported);

937 938 939 940 941
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
942

Y
Yu Yang 已提交
943 944 945 946 947 948 949 950 951
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
952
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
953 954
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
955 956 957 958 959 960 961 962 963 964
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
965 966 967 968 969 970 971
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
972

D
dzhwinter 已提交
973 974 975
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
976
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
977
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
978
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
979

P
peizhilin 已提交
980
#ifndef _WIN32
D
dangqingqing 已提交
981 982 983
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
984
#endif
P
peizhilin 已提交
985
#endif
Y
Yu Yang 已提交
986

987 988 989 990
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
991
      .value("kAll", platform::ProfilerState::kAll)
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1005
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1006
  m.def("reset_profiler", platform::ResetProfiler);
1007
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1008 1009 1010
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1011

1012 1013
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1014
      .def("has", &ir::Pass::Has)
1015 1016 1017
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1018
           })
1019
      .def(
1020
          "set",
1021 1022 1023
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1024 1025
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1026 1027 1028 1029
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1030
        optim_graph.release();
F
flame 已提交
1031
      });
1032

X
fix  
Xin Pan 已提交
1033 1034
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1049
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1050

Y
yuyang18 已提交
1051
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1052 1053 1054 1055
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1067 1068 1069

        )DOC");

Y
yuyang18 已提交
1070
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1071 1072 1073 1074 1075
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1086
      .def_property(
1087 1088 1089 1090
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1091 1092 1093 1094
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1095 1096 1097 1098 1099
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1100 1101 1102 1103
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1104 1105 1106 1107 1108 1109 1110
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1122 1123 1124 1125 1126 1127
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1128

Y
yuyang18 已提交
1129
  exec_strategy.def_property(
Y
yuyang18 已提交
1130 1131 1132 1133 1134 1135 1136
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1137 1138
      });

C
chengduo 已提交
1139 1140 1141 1142
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1154
)DOC");
Y
yuyang18 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1171
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1172
            self.reduce_ = strategy;
C
chengduo 已提交
1173 1174 1175 1176 1177 1178 1179
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1180 1181 1182 1183 1184
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1185
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1186
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1187 1188 1189 1190 1191 1192
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1193 1194 1195 1196
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1197
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1198
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1199 1200 1201 1202
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1203 1204 1205 1206 1207 1208
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1209
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1219
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1220 1221
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1222
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1223 1224 1225 1226 1227 1228
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1241 1242 1243 1244 1245 1246
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1247
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1248 1249 1250 1251 1252
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1282 1283 1284 1285
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1286 1287 1288 1289
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1290
      .def_property(
D
dzhwinter 已提交
1291 1292 1293
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1294 1295 1296 1297
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1298
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1299
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1300 1301 1302 1303 1304
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1305 1306

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1307
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1308
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1309
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1310 1311 1312 1313
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1314 1315 1316 1317 1318
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1319 1320 1321 1322
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1323 1324 1325 1326 1327 1328
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1329

1330
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1331
  BindAsyncExecutor(&m);
F
flame 已提交
1332 1333
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1334
  BindInferenceApi(&m);
L
Luo Tao 已提交
1335
}
1336
}  // namespace pybind
1337
}  // namespace paddle