layer.py 16.9 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
Y
Yu Yang 已提交
15 16 17
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
the way how to configure a neural network topology in Paddle Python code.
18

Y
Yu Yang 已提交
19
The primary usage shows below.
20

Y
Yu Yang 已提交
21
..  code-block:: python
22

Y
Yu Yang 已提交
23
    import paddle.v2 as paddle
24

Y
Yu Yang 已提交
25 26 27 28
    img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
    hidden = paddle.layer.fc(input=img, size=200)
    prediction = paddle.layer.fc(input=hidden, size=10,
                                 act=paddle.activation.Softmax())
29

Y
Yu Yang 已提交
30
    # use prediction instance where needed.
Y
Yu Yang 已提交
31
    parameters = paddle.parameters.create(cost)
32
"""
Q
qiaolongfei 已提交
33

Q
qiaolongfei 已提交
34
import collections
Y
Yu Yang 已提交
35
import inspect
Y
Yu Yang 已提交
36
from config_base import Layer, __convert_to_v2__
Q
qiaolongfei 已提交
37 38 39
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
40
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
41 42
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
43
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
44
from paddle.trainer_config_helpers.layers import layer_support
45 46 47
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
48

L
Luo Tao 已提交
49
import activation
Y
Yu Yang 已提交
50
import re
Q
qiaolongfei 已提交
51
import data_type
Q
qiaolongfei 已提交
52

Y
Yu Yang 已提交
53
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
54

Q
qiaolongfei 已提交
55

D
dangqingqing 已提交
56
def parse_network(output_layers, extra_layers=None):
Q
qiaolongfei 已提交
57
    """
D
dangqingqing 已提交
58 59
    Parse all layers in the neural network graph and
    then generate a ModelConfig object.
Y
Yu Yang 已提交
60 61 62 63 64 65

    ..  note::

        This function is used internally in paddle.v2 module. User should never
        invoke this method.

D
dangqingqing 已提交
66 67 68 69 70
    :param output_layers: Output layers.
    :type output_layers: Layer
    :param extra_layers: Some layers in the neural network graph are not in the
                         path of output_layers.
    :type extra_layers: Layer
Y
Yu Yang 已提交
71 72
    :return: A ModelConfig object instance.
    :rtype: ModelConfig
Q
qiaolongfei 已提交
73
    """
D
dangqingqing 已提交
74 75 76 77 78
    if not isinstance(output_layers, collections.Sequence):
        output_layers = [output_layers]
    if extra_layers is not None and not isinstance(extra_layers,
                                                   collections.Sequence):
        extra_layers = [extra_layers]
Q
qiaolongfei 已提交
79 80

    def __real_func__():
Y
Yu Yang 已提交
81 82 83 84
        """
        __real_func__ is the function that config_parser.parse invoked. It is
        the plain old paddle configuration function.
        """
Q
qiaolongfei 已提交
85
        context = dict()
D
dangqingqing 已提交
86
        real_output = [each.to_proto(context=context) for each in output_layers]
87 88 89 90
        if extra_layers is not None:
            extra_output = [
                each.to_proto(context=context) for each in extra_layers
            ]
Q
qiaolongfei 已提交
91 92 93 94 95
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
96 97 98 99 100 101 102
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Y
Yu Yang 已提交
103 104
    METHOD_NAME = 'data_layer'

Q
qiaolongfei 已提交
105
    def __init__(self, name, type, **kwargs):
106
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
107

Q
qiaolongfei 已提交
108
        self.type = type
Q
qiaolongfei 已提交
109 110
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
111 112 113 114 115

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
116
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
117 118
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
119 120
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
121 122
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)

Y
Yu Yang 已提交
123 124 125 126 127 128 129 130 131 132 133
    def __map_docstr__(doc):
        doc = re.sub(r'(data = [^\)]+)\).*',
                     "data = paddle.layer.data(name=\"input\", "
                     "type=paddle.data_type.dense_vector(1000))", doc)

        doc = re.sub(r':param size:.*',
                     ':param type: Data type of this data layer', doc)
        doc = re.sub(r':type size:.*',
                     ":type size: paddle.v2.data_type.InputType", doc)
        return doc

Q
qiaolongfei 已提交
134

Y
Yu Yang 已提交
135 136 137
class WithExtraParent(Layer):
    def extra_parent(self):
        return self.__extra_parent__
Q
qiaolongfei 已提交
138

Q
qiaolongfei 已提交
139
    def __init__(self, name=None, parent_layers=None):
Y
Yu Yang 已提交
140
        self.__extra_parent__ = []
Q
qiaolongfei 已提交
141
        super(WithExtraParent, self).__init__(
Q
qiaolongfei 已提交
142
            name=name, parent_layers=parent_layers)
Q
qiaolongfei 已提交
143

Y
Yu Yang 已提交
144 145
    def append_extra_parent(self, parent):
        self.__extra_parent__.append(parent)
Q
qiaolongfei 已提交
146

Y
Yu Yang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
        for p in self.__extra_parent__:
            p.to_proto(context=context)

        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
                              collections.Sequence):
                v1_layer = self.__parent_layers__[layer_name].to_proto(
                    context=context)
            else:
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer

        if self.context_name() is None:
            return self.to_proto_impl(context=context, **kwargs)
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(
                context=context, **kwargs)

        if self.use_context_name():
            return context[self.context_name()]
        else:
            return context[self.name]


class MemoryV2(WithExtraParent):
Q
qiaolongfei 已提交
178
    def __init__(self, name, **kwargs):
Y
Yu Yang 已提交
179
        self.name = name
Q
qiaolongfei 已提交
180
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())
Y
Yu Yang 已提交
181 182 183 184 185 186 187 188 189
        self.__kwargs__ = kwargs
        self.__boot_layer_name__ = None
        if 'boot_layer' in kwargs:
            begin_of_current_rnn = []
            # TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
            # function inside step.
            st = inspect.stack()
            for i in xrange(len(st)):
                locs = inspect.stack()[i][0].f_locals
Q
qiaolongfei 已提交
190 191 192
                keys = locs.keys()
                for key in keys:
                    val = locs[key]
Y
Yu Yang 已提交
193 194
                    if isinstance(val, RecurrentLayerInput):
                        begin_of_current_rnn.append(val)
Q
qiaolongfei 已提交
195 196 197 198
                    elif isinstance(val, collections.Sequence):
                        for v in val:
                            if isinstance(v, RecurrentLayerInput):
                                begin_of_current_rnn.append(v)
Y
Yu Yang 已提交
199 200 201 202 203 204 205 206 207 208 209

                if begin_of_current_rnn:
                    break
            assert begin_of_current_rnn is not None
            for extra in begin_of_current_rnn:
                self.append_extra_parent(extra)
                assert isinstance(extra, WithExtraParent)
                extra.append_extra_parent(kwargs['boot_layer'])
                self.__boot_layer_name__ = kwargs['boot_layer'].name

    def to_proto_impl(self, context, **kwargs):
Q
qiaolongfei 已提交
210 211 212 213 214
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
215

Y
Yu Yang 已提交
216 217
        if self.__boot_layer_name__ is not None:
            args['boot_layer'] = context[self.__boot_layer_name__]
Q
qiaolongfei 已提交
218

Q
qiaolongfei 已提交
219 220 221 222 223 224 225
        size = args.get('size', None)
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
Q
qiaolongfei 已提交
226
        return conf_helps.memory(name=self.name, **args)
Q
qiaolongfei 已提交
227

228 229 230
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
231 232 233 234 235 236 237
    def use_context_name(self):
        """
        memory layer will have the same name with some layer
        :return:
        """
        return True

Q
qiaolongfei 已提交
238

239
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
240 241 242 243 244
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

245 246 247 248 249 250 251 252 253 254
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
255 256 257 258 259 260 261
class StaticInputV2(object):
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerV2)
        self.name = input.name
        self.input = input
        self.is_seq = is_seq
        self.size = size
262
        # TODO(add size check)
Q
qiaolongfei 已提交
263
        # assert input.size is not None or size is not None
264 265


266 267 268 269 270 271 272 273 274 275
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
276
        pass
277 278 279 280 281 282 283 284 285 286

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
287
        self.__inputs__ = []
288
        if input is not None:
D
dangqingqing 已提交
289
            self.__inputs__ = input
290

D
dangqingqing 已提交
291 292
        other_kwargs = dict()
        other_kwargs['name'] = name
293 294 295 296
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr
D
dangqingqing 已提交
297
        parent_layers = {"input": self.__inputs__}
Q
qiaolongfei 已提交
298
        super(MixedLayerV2, self).__init__(name, parent_layers)
299 300 301 302
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
303
            self.__inputs__.append(other)
304 305
            return self
        else:
Y
Yu Yang 已提交
306
            raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
307 308

    def __enter__(self):
D
dangqingqing 已提交
309
        assert len(self.__inputs__) == 0
310 311 312 313 314 315 316 317 318 319 320
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
Q
qiaolongfei 已提交
321
        size = args.get('size', None)
Q
qiaolongfei 已提交
322 323 324 325 326 327
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
D
dangqingqing 已提交
328
        return getattr(conf_helps, self.__method_name__)(**args)
329 330 331


@wrap_name_default("mixed")
D
dangqingqing 已提交
332
@wrap_act_default(act=activation.Linear())
333 334 335 336 337 338 339 340 341 342 343
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Y
Yu Yang 已提交
344
class RecurrentLayerInput(WithExtraParent):
345 346 347 348 349 350 351 352 353 354
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerInput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

Y
Yu Yang 已提交
355
    def to_proto_impl(self, context, **kwargs):
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

    def to_proto_impl(self, **kwargs):
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


Q
qiaolongfei 已提交
380
LayerV2 = Layer
Q
qiaolongfei 已提交
381
data = DataLayerV2
Y
Yu Yang 已提交
382
data.__name__ = 'data'
L
Luo Tao 已提交
383 384
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
Q
qiaolongfei 已提交
385
memory = MemoryV2
Q
qiaolongfei 已提交
386

Y
Yu Yang 已提交
387 388

def __layer_name_mapping__(inname):
Q
qiaolongfei 已提交
389
    if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
Y
Yu Yang 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
Y
Yu Yang 已提交
411 412 413
        lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
                        'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left',
Q
qiaolongfei 已提交
414
                        'right', 'output_mem'],
Y
Yu Yang 已提交
415 416 417 418 419 420 421
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)
Y
Yu Yang 已提交
422
    globals()[new_name].__name__ = new_name
Y
Yu Yang 已提交
423 424 425 426 427 428 429 430 431 432 433 434


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
435

Q
qiaolongfei 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

    non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
                               input)
    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': non_static_inputs})
        for i in xrange(len(non_static_inputs))
    ]

    def __real_step__(*args):
        rnn_input = list(args)
        static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
        for static_input in static_inputs:
            mem_name = "__%s_memory__" % static_input.input.name
            mem = memory(
                name=mem_name,
                is_seq=static_input.is_seq,
Q
qiaolongfei 已提交
460
                size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
461 462 463
                boot_layer=static_input.input)
            with mixed(
                    name=mem_name,
Q
qiaolongfei 已提交
464
                    size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
                    act=activation.Identity()) as mix:
                mix += identity_projection(input=mem)
            rnn_input.insert(input.index(static_input), mix)
        return step(*rnn_input)

    actual_output = __real_step__(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv
Y
Yu Yang 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511


__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))

__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

# convert projection
for prj in __projection_names__:
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
    globals()[prj].__name__ = prj

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)
    globals()[op[0]].__name__ = op[0]