layer.py 16.2 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
Y
Yu Yang 已提交
15 16 17
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
the way how to configure a neural network topology in Paddle Python code.
18

Y
Yu Yang 已提交
19
The primary usage shows below.
20

Y
Yu Yang 已提交
21
..  code-block:: python
22

Y
Yu Yang 已提交
23
    import paddle.v2 as paddle
24

Y
Yu Yang 已提交
25 26 27 28
    img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
    hidden = paddle.layer.fc(input=img, size=200)
    prediction = paddle.layer.fc(input=hidden, size=10,
                                 act=paddle.activation.Softmax())
29

Y
Yu Yang 已提交
30 31
    # use prediction instance where needed.
    parameters = paddle.v2.parameters.create(cost)
32
"""
Q
qiaolongfei 已提交
33

Q
qiaolongfei 已提交
34
import collections
Y
Yu Yang 已提交
35
import inspect
Y
Yu Yang 已提交
36
from config_base import Layer, __convert_to_v2__
Q
qiaolongfei 已提交
37 38 39
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
40
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
41 42
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
43
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
44
from paddle.trainer_config_helpers.layers import layer_support
45 46 47
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
48

L
Luo Tao 已提交
49
import activation
Y
Yu Yang 已提交
50
import re
Q
qiaolongfei 已提交
51
import data_type
Q
qiaolongfei 已提交
52

Y
Yu Yang 已提交
53
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
54

Q
qiaolongfei 已提交
55

Q
qiaolongfei 已提交
56 57
def parse_network(*outputs):
    """
Y
Yu Yang 已提交
58 59 60 61 62 63 64 65 66 67 68
    Parse all output layers and then generate a ModelConfig object.

    ..  note::

        This function is used internally in paddle.v2 module. User should never
        invoke this method.

    :param outputs: Output layers.
    :type outputs: Layer
    :return: A ModelConfig object instance.
    :rtype: ModelConfig
Q
qiaolongfei 已提交
69 70 71
    """

    def __real_func__():
Y
Yu Yang 已提交
72 73 74 75
        """
        __real_func__ is the function that config_parser.parse invoked. It is
        the plain old paddle configuration function.
        """
Q
qiaolongfei 已提交
76 77 78 79 80 81 82
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
83 84 85 86 87 88 89
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Y
Yu Yang 已提交
90 91
    METHOD_NAME = 'data_layer'

Q
qiaolongfei 已提交
92
    def __init__(self, name, type, **kwargs):
93
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
94

Q
qiaolongfei 已提交
95
        self.type = type
Q
qiaolongfei 已提交
96 97
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
98 99 100 101 102

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
103
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
104 105
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
106 107
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
108 109
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)

Y
Yu Yang 已提交
110 111 112 113 114 115 116 117 118 119 120
    def __map_docstr__(doc):
        doc = re.sub(r'(data = [^\)]+)\).*',
                     "data = paddle.layer.data(name=\"input\", "
                     "type=paddle.data_type.dense_vector(1000))", doc)

        doc = re.sub(r':param size:.*',
                     ':param type: Data type of this data layer', doc)
        doc = re.sub(r':type size:.*',
                     ":type size: paddle.v2.data_type.InputType", doc)
        return doc

Q
qiaolongfei 已提交
121

Y
Yu Yang 已提交
122 123 124
class WithExtraParent(Layer):
    def extra_parent(self):
        return self.__extra_parent__
Q
qiaolongfei 已提交
125

Q
qiaolongfei 已提交
126
    def __init__(self, name=None, parent_layers=None):
Y
Yu Yang 已提交
127
        self.__extra_parent__ = []
Q
qiaolongfei 已提交
128
        super(WithExtraParent, self).__init__(
Q
qiaolongfei 已提交
129
            name=name, parent_layers=parent_layers)
Q
qiaolongfei 已提交
130

Y
Yu Yang 已提交
131 132
    def append_extra_parent(self, parent):
        self.__extra_parent__.append(parent)
Q
qiaolongfei 已提交
133

Y
Yu Yang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
        for p in self.__extra_parent__:
            p.to_proto(context=context)

        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
                              collections.Sequence):
                v1_layer = self.__parent_layers__[layer_name].to_proto(
                    context=context)
            else:
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer

        if self.context_name() is None:
            return self.to_proto_impl(context=context, **kwargs)
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(
                context=context, **kwargs)

        if self.use_context_name():
            return context[self.context_name()]
        else:
            return context[self.name]


class MemoryV2(WithExtraParent):
Q
qiaolongfei 已提交
165
    def __init__(self, name, **kwargs):
Y
Yu Yang 已提交
166
        self.name = name
Q
qiaolongfei 已提交
167
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())
Y
Yu Yang 已提交
168 169 170 171 172 173 174 175 176
        self.__kwargs__ = kwargs
        self.__boot_layer_name__ = None
        if 'boot_layer' in kwargs:
            begin_of_current_rnn = []
            # TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
            # function inside step.
            st = inspect.stack()
            for i in xrange(len(st)):
                locs = inspect.stack()[i][0].f_locals
Q
qiaolongfei 已提交
177 178 179
                keys = locs.keys()
                for key in keys:
                    val = locs[key]
Y
Yu Yang 已提交
180 181
                    if isinstance(val, RecurrentLayerInput):
                        begin_of_current_rnn.append(val)
Q
qiaolongfei 已提交
182 183 184 185
                    elif isinstance(val, collections.Sequence):
                        for v in val:
                            if isinstance(v, RecurrentLayerInput):
                                begin_of_current_rnn.append(v)
Y
Yu Yang 已提交
186 187 188 189 190 191 192 193 194 195 196

                if begin_of_current_rnn:
                    break
            assert begin_of_current_rnn is not None
            for extra in begin_of_current_rnn:
                self.append_extra_parent(extra)
                assert isinstance(extra, WithExtraParent)
                extra.append_extra_parent(kwargs['boot_layer'])
                self.__boot_layer_name__ = kwargs['boot_layer'].name

    def to_proto_impl(self, context, **kwargs):
Q
qiaolongfei 已提交
197 198 199 200 201
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
202

Y
Yu Yang 已提交
203 204
        if self.__boot_layer_name__ is not None:
            args['boot_layer'] = context[self.__boot_layer_name__]
Q
qiaolongfei 已提交
205

Q
qiaolongfei 已提交
206 207 208 209 210 211 212
        size = args.get('size', None)
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
Q
qiaolongfei 已提交
213
        return conf_helps.memory(name=self.name, **args)
Q
qiaolongfei 已提交
214

215 216 217
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
218 219 220 221 222 223 224
    def use_context_name(self):
        """
        memory layer will have the same name with some layer
        :return:
        """
        return True

Q
qiaolongfei 已提交
225

226
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
227 228 229 230 231
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

232 233 234 235 236 237 238 239 240 241
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
242 243 244 245 246 247 248
class StaticInputV2(object):
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerV2)
        self.name = input.name
        self.input = input
        self.is_seq = is_seq
        self.size = size
249
        # TODO(add size check)
Q
qiaolongfei 已提交
250
        # assert input.size is not None or size is not None
251 252


253 254 255 256 257 258 259 260 261 262
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
263
        pass
264 265 266 267 268 269 270 271 272 273

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
274
        self.__inputs__ = []
275
        if input is not None:
D
dangqingqing 已提交
276
            self.__inputs__ = input
277

D
dangqingqing 已提交
278 279
        other_kwargs = dict()
        other_kwargs['name'] = name
280 281 282 283
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr
D
dangqingqing 已提交
284
        parent_layers = {"input": self.__inputs__}
Q
qiaolongfei 已提交
285
        super(MixedLayerV2, self).__init__(name, parent_layers)
286 287 288 289
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
290
            self.__inputs__.append(other)
291 292
            return self
        else:
Y
Yu Yang 已提交
293
            raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
294 295

    def __enter__(self):
D
dangqingqing 已提交
296
        assert len(self.__inputs__) == 0
297 298 299 300 301 302 303 304 305 306 307
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
Q
qiaolongfei 已提交
308
        size = args.get('size', None)
Q
qiaolongfei 已提交
309 310 311 312 313 314
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
D
dangqingqing 已提交
315
        return getattr(conf_helps, self.__method_name__)(**args)
316 317 318


@wrap_name_default("mixed")
D
dangqingqing 已提交
319
@wrap_act_default(act=activation.Linear())
320 321 322 323 324 325 326 327 328 329 330
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Y
Yu Yang 已提交
331
class RecurrentLayerInput(WithExtraParent):
332 333 334 335 336 337 338 339 340 341
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerInput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

Y
Yu Yang 已提交
342
    def to_proto_impl(self, context, **kwargs):
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

    def to_proto_impl(self, **kwargs):
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


Q
qiaolongfei 已提交
367
LayerV2 = Layer
Q
qiaolongfei 已提交
368
data = DataLayerV2
Y
Yu Yang 已提交
369
data.__name__ = 'data'
L
Luo Tao 已提交
370 371
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
Q
qiaolongfei 已提交
372
memory = MemoryV2
Q
qiaolongfei 已提交
373

Y
Yu Yang 已提交
374 375

def __layer_name_mapping__(inname):
Q
qiaolongfei 已提交
376
    if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
Y
Yu Yang 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
Y
Yu Yang 已提交
398 399 400
        lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
                        'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left',
Q
qiaolongfei 已提交
401
                        'right', 'output_mem'],
Y
Yu Yang 已提交
402 403 404 405 406 407 408
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)
Y
Yu Yang 已提交
409
    globals()[new_name].__name__ = new_name
Y
Yu Yang 已提交
410 411 412 413 414 415 416 417 418 419 420 421


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
422

Q
qiaolongfei 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

    non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
                               input)
    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': non_static_inputs})
        for i in xrange(len(non_static_inputs))
    ]

    def __real_step__(*args):
        rnn_input = list(args)
        static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
        for static_input in static_inputs:
            mem_name = "__%s_memory__" % static_input.input.name
            mem = memory(
                name=mem_name,
                is_seq=static_input.is_seq,
Q
qiaolongfei 已提交
447
                size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
448 449 450
                boot_layer=static_input.input)
            with mixed(
                    name=mem_name,
Q
qiaolongfei 已提交
451
                    size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                    act=activation.Identity()) as mix:
                mix += identity_projection(input=mem)
            rnn_input.insert(input.index(static_input), mix)
        return step(*rnn_input)

    actual_output = __real_step__(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv
Y
Yu Yang 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498


__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))

__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

# convert projection
for prj in __projection_names__:
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
    globals()[prj].__name__ = prj

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)
    globals()[op[0]].__name__ = op[0]