layer.py 16.5 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69
import collections
Y
Yu Yang 已提交
70
import inspect
Y
Yu Yang 已提交
71
from config_base import Layer, __convert_to_v2__
Q
qiaolongfei 已提交
72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
75
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
76 77
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
78
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
79
from paddle.trainer_config_helpers.layers import layer_support
80 81 82
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
83

L
Luo Tao 已提交
84
import activation
Q
qiaolongfei 已提交
85
import data_type
Q
qiaolongfei 已提交
86

Y
Yu Yang 已提交
87
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
88

D
dangqingqing 已提交
89 90 91 92 93 94 95
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
96

Q
qiaolongfei 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
112 113 114 115 116 117 118
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
119
    def __init__(self, name, type, **kwargs):
120
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
121

Q
qiaolongfei 已提交
122
        self.type = type
Q
qiaolongfei 已提交
123 124
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
125 126 127 128 129

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
130
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
131 132
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
133 134
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
135 136 137
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Y
Yu Yang 已提交
138 139 140
class WithExtraParent(Layer):
    def extra_parent(self):
        return self.__extra_parent__
Q
qiaolongfei 已提交
141

Q
qiaolongfei 已提交
142
    def __init__(self, name=None, parent_layers=None):
Y
Yu Yang 已提交
143
        self.__extra_parent__ = []
Q
qiaolongfei 已提交
144
        super(WithExtraParent, self).__init__(
Q
qiaolongfei 已提交
145
            name=name, parent_layers=parent_layers)
Q
qiaolongfei 已提交
146

Y
Yu Yang 已提交
147 148
    def append_extra_parent(self, parent):
        self.__extra_parent__.append(parent)
Q
qiaolongfei 已提交
149

Y
Yu Yang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
        for p in self.__extra_parent__:
            p.to_proto(context=context)

        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
                              collections.Sequence):
                v1_layer = self.__parent_layers__[layer_name].to_proto(
                    context=context)
            else:
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer

        if self.context_name() is None:
            return self.to_proto_impl(context=context, **kwargs)
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(
                context=context, **kwargs)

        if self.use_context_name():
            return context[self.context_name()]
        else:
            return context[self.name]


class MemoryV2(WithExtraParent):
Q
qiaolongfei 已提交
181
    def __init__(self, name, **kwargs):
Y
Yu Yang 已提交
182
        self.name = name
Q
qiaolongfei 已提交
183
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())
Y
Yu Yang 已提交
184 185 186 187 188 189 190 191 192
        self.__kwargs__ = kwargs
        self.__boot_layer_name__ = None
        if 'boot_layer' in kwargs:
            begin_of_current_rnn = []
            # TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
            # function inside step.
            st = inspect.stack()
            for i in xrange(len(st)):
                locs = inspect.stack()[i][0].f_locals
Q
qiaolongfei 已提交
193 194 195
                keys = locs.keys()
                for key in keys:
                    val = locs[key]
Y
Yu Yang 已提交
196 197
                    if isinstance(val, RecurrentLayerInput):
                        begin_of_current_rnn.append(val)
Q
qiaolongfei 已提交
198 199 200 201
                    elif isinstance(val, collections.Sequence):
                        for v in val:
                            if isinstance(v, RecurrentLayerInput):
                                begin_of_current_rnn.append(v)
Y
Yu Yang 已提交
202 203 204 205 206 207 208 209 210 211 212

                if begin_of_current_rnn:
                    break
            assert begin_of_current_rnn is not None
            for extra in begin_of_current_rnn:
                self.append_extra_parent(extra)
                assert isinstance(extra, WithExtraParent)
                extra.append_extra_parent(kwargs['boot_layer'])
                self.__boot_layer_name__ = kwargs['boot_layer'].name

    def to_proto_impl(self, context, **kwargs):
Q
qiaolongfei 已提交
213 214 215 216 217
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
218

Y
Yu Yang 已提交
219 220
        if self.__boot_layer_name__ is not None:
            args['boot_layer'] = context[self.__boot_layer_name__]
Q
qiaolongfei 已提交
221

Q
qiaolongfei 已提交
222 223 224 225 226 227 228
        size = args.get('size', None)
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
Q
qiaolongfei 已提交
229
        return conf_helps.memory(name=self.name, **args)
Q
qiaolongfei 已提交
230

231 232 233
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
234 235 236 237 238 239 240
    def use_context_name(self):
        """
        memory layer will have the same name with some layer
        :return:
        """
        return True

Q
qiaolongfei 已提交
241

242
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
243 244 245 246 247
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

248 249 250 251 252 253 254 255 256 257
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
258 259 260 261 262 263 264 265 266
class StaticInputV2(object):
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerV2)
        self.name = input.name
        self.input = input
        self.is_seq = is_seq
        self.size = size
        # TODO(qiaolongfei): add size
        # assert input.size is not None or size is not None
267 268


269 270 271 272 273 274 275 276 277 278
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
279
        pass
280 281 282 283 284 285 286 287 288 289

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
290
        self.__inputs__ = []
291
        if input is not None:
D
dangqingqing 已提交
292
            self.__inputs__ = input
293

D
dangqingqing 已提交
294 295
        other_kwargs = dict()
        other_kwargs['name'] = name
296 297 298 299
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr
D
dangqingqing 已提交
300
        parent_layers = {"input": self.__inputs__}
Q
qiaolongfei 已提交
301
        super(MixedLayerV2, self).__init__(name, parent_layers)
302 303 304 305
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
306
            self.__inputs__.append(other)
307 308
            return self
        else:
Y
Yu Yang 已提交
309
            raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
310 311

    def __enter__(self):
D
dangqingqing 已提交
312
        assert len(self.__inputs__) == 0
313 314 315 316 317 318 319 320 321 322 323
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
Q
qiaolongfei 已提交
324
        size = args.get('size', None)
Q
qiaolongfei 已提交
325 326 327 328 329 330
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
D
dangqingqing 已提交
331
        return getattr(conf_helps, self.__method_name__)(**args)
332 333 334


@wrap_name_default("mixed")
D
dangqingqing 已提交
335
@wrap_act_default(act=activation.Linear())
336 337 338 339 340 341 342 343 344 345 346
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Y
Yu Yang 已提交
347
class RecurrentLayerInput(WithExtraParent):
348 349 350 351 352 353 354 355 356 357
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerInput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

Y
Yu Yang 已提交
358
    def to_proto_impl(self, context, **kwargs):
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

    def to_proto_impl(self, **kwargs):
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


Q
qiaolongfei 已提交
383
LayerV2 = Layer
Q
qiaolongfei 已提交
384
data = DataLayerV2
L
Luo Tao 已提交
385 386
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
Q
qiaolongfei 已提交
387
memory = MemoryV2
Q
qiaolongfei 已提交
388

Y
Yu Yang 已提交
389 390

def __layer_name_mapping__(inname):
Q
qiaolongfei 已提交
391
    if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
Y
Yu Yang 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
Y
Yu Yang 已提交
413 414 415
        lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
                        'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left',
Q
qiaolongfei 已提交
416
                        'right', 'output_mem'],
Y
Yu Yang 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
436

437
# convert projection
D
dangqingqing 已提交
438
for prj in __projection_names__:
L
Luo Tao 已提交
439 440
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
441 442 443 444 445 446 447 448

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
449 450
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)
Q
qiaolongfei 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475


@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

    non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
                               input)
    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': non_static_inputs})
        for i in xrange(len(non_static_inputs))
    ]

    def __real_step__(*args):
        rnn_input = list(args)
        static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
        for static_input in static_inputs:
            mem_name = "__%s_memory__" % static_input.input.name
            mem = memory(
                name=mem_name,
                is_seq=static_input.is_seq,
Q
qiaolongfei 已提交
476
                size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
477 478 479
                boot_layer=static_input.input)
            with mixed(
                    name=mem_name,
Q
qiaolongfei 已提交
480
                    size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
                    act=activation.Identity()) as mix:
                mix += identity_projection(input=mem)
            rnn_input.insert(input.index(static_input), mix)
        return step(*rnn_input)

    actual_output = __real_step__(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv