layer.py 17.7 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69
import collections
Y
Yu Yang 已提交
70
import inspect
Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
74
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
75 76
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
77
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
78
from paddle.trainer_config_helpers.layers import layer_support
79 80 81
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
82

L
Luo Tao 已提交
83
import activation
Q
qiaolongfei 已提交
84
import data_type
Q
qiaolongfei 已提交
85

Y
Yu Yang 已提交
86
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
87

D
dangqingqing 已提交
88 89 90 91 92 93 94
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
95

Q
qiaolongfei 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
111
class Layer(object):
112
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
113
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
114
        self.name = name
Q
qiaolongfei 已提交
115
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
116 117 118 119 120 121

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
122 123
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
124
                              collections.Sequence):
Q
qiaolongfei 已提交
125
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
126 127
                    context=context)
            else:
Q
qiaolongfei 已提交
128 129 130
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
131

132
        if self.context_name() is None:
133
            return self.to_proto_impl(**kwargs)
134 135
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(**kwargs)
Q
qiaolongfei 已提交
136 137 138 139 140

        if self.use_context_name():
            return context[self.context_name()]
        else:
            return context[self.name]
Q
qiaolongfei 已提交
141 142 143 144

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()

145 146 147 148 149 150 151 152
    def context_name(self):
        """
        Context name means the context which stores `to_proto_impl` result.
        If multiple layer share same context_name, the `to_proto_impl` of them
        will be invoked only once.
        """
        return self.name

Q
qiaolongfei 已提交
153 154 155
    def use_context_name(self):
        return False

Q
qiaolongfei 已提交
156

L
Luo Tao 已提交
157 158 159
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
160 161 162
    else:
        wrapper = None

Q
qiaolongfei 已提交
163
    class V2LayerImpl(Layer):
D
dangqingqing 已提交
164
        def __init__(self, **kwargs):
Q
qiaolongfei 已提交
165 166 167
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
168 169
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
170 171 172 173 174

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

D
dangqingqing 已提交
175
            name = kwargs.get('name', None)
176
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
177 178 179 180 181 182 183 184 185 186 187
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
188
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
189

Q
qiaolongfei 已提交
190
    return V2LayerImpl
Q
qiaolongfei 已提交
191 192


Q
qiaolongfei 已提交
193 194 195 196 197 198 199
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
200
    def __init__(self, name, type, **kwargs):
201
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
202

Q
qiaolongfei 已提交
203
        self.type = type
Q
qiaolongfei 已提交
204 205
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
206 207 208 209 210

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
211
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
212 213
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
214 215
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
216 217 218
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Y
Yu Yang 已提交
219 220 221
class WithExtraParent(Layer):
    def extra_parent(self):
        return self.__extra_parent__
Q
qiaolongfei 已提交
222

Y
Yu Yang 已提交
223 224 225
    def __init__(self, name=None, parent_layers=None):
        self.__extra_parent__ = []
        super(WithExtraParent, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
226

Y
Yu Yang 已提交
227 228
    def append_extra_parent(self, parent):
        self.__extra_parent__.append(parent)
Q
qiaolongfei 已提交
229

Y
Yu Yang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
        for p in self.__extra_parent__:
            p.to_proto(context=context)

        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
                              collections.Sequence):
                v1_layer = self.__parent_layers__[layer_name].to_proto(
                    context=context)
            else:
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer

        if self.context_name() is None:
            return self.to_proto_impl(context=context, **kwargs)
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(
                context=context, **kwargs)

        if self.use_context_name():
            return context[self.context_name()]
        else:
            return context[self.name]


class MemoryV2(WithExtraParent):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())
        self.__kwargs__ = kwargs
        self.__boot_layer_name__ = None
        if 'boot_layer' in kwargs:
            begin_of_current_rnn = []
            # TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
            # function inside step.
            st = inspect.stack()
            for i in xrange(len(st)):
                locs = inspect.stack()[i][0].f_locals
                for val in locs.viewvalues():
                    if isinstance(val, RecurrentLayerInput):
                        begin_of_current_rnn.append(val)

                if begin_of_current_rnn:
                    break
            assert begin_of_current_rnn is not None
            for extra in begin_of_current_rnn:
                self.append_extra_parent(extra)
                assert isinstance(extra, WithExtraParent)
                extra.append_extra_parent(kwargs['boot_layer'])
                self.__boot_layer_name__ = kwargs['boot_layer'].name

    def to_proto_impl(self, context, **kwargs):
Q
qiaolongfei 已提交
288 289 290 291 292
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
293

Y
Yu Yang 已提交
294 295
        if self.__boot_layer_name__ is not None:
            args['boot_layer'] = context[self.__boot_layer_name__]
Q
qiaolongfei 已提交
296 297
        return conf_helps.memory(name=self.name, size=self.size, **args)

298 299 300
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
301 302 303 304 305 306 307
    def use_context_name(self):
        """
        memory layer will have the same name with some layer
        :return:
        """
        return True

Q
qiaolongfei 已提交
308

309
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
310 311 312 313 314
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

315 316 317 318 319 320 321 322 323 324
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
325
class StaticInputV2(Layer):
326 327 328 329 330
    def __init__(self, input=None, **kwargs):
        assert input is not None
        self.__kwargs__ = kwargs
        super(StaticInputV2, self).__init__(
            name=input.name, parent_layers={'input': input})
331

332 333
    def context_name(self):
        return self.name + "#static_input"
Q
qiaolongfei 已提交
334

335 336
    def to_proto_impl(self, **kwargs):
        args = dict()
337 338 339
        args.update(kwargs)
        args.update(self.__kwargs__)
        return conf_helps.StaticInput(**args)
340 341


342 343 344 345 346 347 348 349 350 351
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
352
        pass
353 354 355 356 357 358 359 360 361 362

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
363
        self.__inputs__ = []
364
        if input is not None:
D
dangqingqing 已提交
365
            self.__inputs__ = input
366

D
dangqingqing 已提交
367 368
        other_kwargs = dict()
        other_kwargs['name'] = name
369 370 371 372 373
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

D
dangqingqing 已提交
374 375
        parent_layers = {"input": self.__inputs__}
        super(MixedLayerV2, self).__init__(name, parent_layers)
376 377 378 379
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
380
            self.__inputs__.append(other)
381 382
            return self
        else:
Y
Yu Yang 已提交
383
            raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
384 385

    def __enter__(self):
D
dangqingqing 已提交
386
        assert len(self.__inputs__) == 0
387 388 389 390 391 392 393 394 395 396 397
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
D
dangqingqing 已提交
398
        return getattr(conf_helps, self.__method_name__)(**args)
399 400 401


@wrap_name_default("mixed")
D
dangqingqing 已提交
402
@wrap_act_default(act=activation.Linear())
403 404 405 406 407 408 409 410 411 412 413
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Y
Yu Yang 已提交
414
class RecurrentLayerInput(WithExtraParent):
415 416 417 418 419 420 421 422 423 424
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerInput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

Y
Yu Yang 已提交
425
    def to_proto_impl(self, context, **kwargs):
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

    def to_proto_impl(self, **kwargs):
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': input})
        for i in xrange(len(input))
    ]

    actual_output = step(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv


Q
qiaolongfei 已提交
481
LayerV2 = Layer
Q
qiaolongfei 已提交
482
data = DataLayerV2
L
Luo Tao 已提交
483 484
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
485
recurrent_group = recurrent_group
Q
qiaolongfei 已提交
486
memory = MemoryV2
Q
qiaolongfei 已提交
487

Y
Yu Yang 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

def __layer_name_mapping__(inname):
    if inname in ['data_layer', 'memory', 'mixed_layer']:
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
Y
Yu Yang 已提交
512 513 514 515
        lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
                        'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left',
                        'right'],
Y
Yu Yang 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
535

536
# convert projection
D
dangqingqing 已提交
537
for prj in __projection_names__:
L
Luo Tao 已提交
538 539
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
540 541 542 543 544 545 546 547

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
548 549
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)