layer.py 10.1 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
Q
qiaolongfei 已提交
75

Q
qiaolongfei 已提交
76
import data_type
Q
qiaolongfei 已提交
77

Q
qiaolongfei 已提交
78 79
__all__ = [
    'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
L
Luo Tao 已提交
80 81
    'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
    'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
Q
qiaolongfei 已提交
82
    'sum_cost', 'huber_cost', 'memory', 'embedding', 'recurrent_group'
Q
qiaolongfei 已提交
83 84
]

Q
qiaolongfei 已提交
85

Q
qiaolongfei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
101
class Layer(object):
102
    def __init__(self, name, parent_layers):
Q
qiaolongfei 已提交
103
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
104 105
        assert isinstance(name, basestring)
        self.name = name
Q
qiaolongfei 已提交
106
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
107 108 109 110 111 112

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
113 114
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
115
                              collections.Sequence):
Q
qiaolongfei 已提交
116
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
117 118
                    context=context)
            else:
Q
qiaolongfei 已提交
119 120 121
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
122

123 124 125
        if self.name is None:
            return self.to_proto_impl(**kwargs)

Q
qiaolongfei 已提交
126
        # memory may have the same name with some layer
127
        if isinstance(self, MemoryV2) or isinstance(self, LayerOutputV2):
Q
qiaolongfei 已提交
128 129
            return self.to_proto_impl(**kwargs)

Q
qiaolongfei 已提交
130 131 132 133 134 135 136 137
        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


Q
qiaolongfei 已提交
138
def __convert_to_v2__(method_name, name_prefix, parent_names):
Q
qiaolongfei 已提交
139 140 141 142 143
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
144
    class V2LayerImpl(Layer):
145
        def __init__(self, name=None, **kwargs):
Q
qiaolongfei 已提交
146 147 148
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
149 150
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
151 152 153 154 155

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

156
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
            return getattr(conf_helps, method_name)(name=self.name, **args)

Q
qiaolongfei 已提交
170
    return V2LayerImpl
Q
qiaolongfei 已提交
171 172


Q
qiaolongfei 已提交
173 174 175 176 177 178 179
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
180
    def __init__(self, name, type, **kwargs):
181
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
182

Q
qiaolongfei 已提交
183
        self.type = type
Q
qiaolongfei 已提交
184 185
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
186 187 188 189 190

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
191
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
192 193
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
194 195
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
196 197 198
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Q
qiaolongfei 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
class MemoryV2(Layer):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
        self.__kwargs__ = kwargs
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.memory(name=self.name, size=self.size, **args)


215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
class LayerOutputV2(Layer):
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


class RecurrentGroupV2(Layer):
    def __init__(self, name, **kwargs):
        self.__parent_names__ = ['input']
        other_kwargs = dict()
        parent_layers = dict()
        for pname in self.__parent_names__:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]
        for key in kwargs.keys():
            if key not in self.__parent_names__:
                other_kwargs[key] = kwargs[key]
        self.__kwargs__ = other_kwargs

        super(RecurrentGroupV2, self).__init__(
            name=name, parent_layers=parent_layers)

    def to_proto_impl(self, **kwargs):
        def in_args_converter(in_args):
            if not isinstance(in_args, collections.Sequence):
                in_args = [in_args]
            return [LayerOutputV2(input) for input in in_args]

        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.recurrent_group(
            name=self.name, in_args_converter=in_args_converter, **args)


Q
qiaolongfei 已提交
257
data = DataLayerV2
Q
qiaolongfei 已提交
258 259
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
L
Luo Tao 已提交
260
    'maxid_layer', name_prefix='maxid', parent_names=['input'])
Q
qiaolongfei 已提交
261
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
262 263
    'classification_cost',
    name_prefix='classification_cost',
L
Luo Tao 已提交
264 265 266 267 268
    parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
    'regression_cost',
    name_prefix='regression_cost',
    parent_names=['input', 'label', 'weight'])
Q
qiaolongfei 已提交
269 270 271 272
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
Q
qiaolongfei 已提交
273 274 275 276
embedding = __convert_to_v2__(
    'embedding_layer', name_prefix='embedding', parent_names=['input'])
last_seq = __convert_to_v2__(
    'last_seq', name_prefix='last_seq', parent_names=['input'])
277
recurrent_group = RecurrentGroupV2
Q
qiaolongfei 已提交
278
memory = MemoryV2
Q
qiaolongfei 已提交
279

L
Luo Tao 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
    'cross_entropy_with_selfnorm',
    name_prefix='cross_entropy_with_selfnorm',
    parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
    'multi_binary_label_cross_entropy',
    name_prefix='multi_binary_label_cross_entropy',
    parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
    'rank_cost',
    name_prefix='rank_cost',
    parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
    'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
    'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
    'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])