pybind.cc 65.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
32 33 34
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
37
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
42
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
48
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/platform/cpu_info.h"
S
silingtong123 已提交
50
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/platform/enforce.h"
52
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
55
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
59
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
60
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
62
#include "paddle/fluid/pybind/ir.h"
63

W
wopeizl 已提交
64
#ifndef _WIN32
D
dongdaxiang 已提交
65
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
66
#endif
67 68
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
69
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
70
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/pybind/tensor_py.h"
72
#include "paddle/fluid/string/to_string.h"
73

D
Dong Zhihong 已提交
74
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
75
#ifndef _WIN32
Y
Yi Wang 已提交
76
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
77
#endif
Y
Yi Wang 已提交
78 79
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
80 81
#endif

82 83 84 85
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
86 87
#include "pybind11/stl.h"

88 89 90 91
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
92 93 94
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

95
namespace paddle {
96
namespace pybind {
97
bool IsCompiledWithCUDA() {
98
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
99 100 101 102 103 104
  return false;
#else
  return true;
#endif
}

105 106 107 108 109 110 111 112
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

113 114 115 116 117 118 119 120
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

121
bool IsCompiledWithBrpc() {
122
#ifndef PADDLE_WITH_DISTRIBUTE
123 124
  return false;
#endif
125 126 127 128 129 130

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
131 132
}

Y
update  
Yancey1989 已提交
133
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
134
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
135 136 137 138 139 140
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
141 142 143 144 145 146 147 148 149 150
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

151 152 153 154 155 156
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
157 158 159
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
160
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
161

162
  m.doc() = "C++ core of PaddlePaddle";
163

164 165 166 167
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

168
  BindException(&m);
Y
Yu Yang 已提交
169

170 171
  m.def("set_num_threads", &platform::SetNumThreads);

S
sneaxiy 已提交
172
  m.def(
S
sneaxiy 已提交
173
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
174 175 176 177
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
178 179 180
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
181 182 183
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
184
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
185

186
  m.def("_set_fuse_parameter_group_size",
187
        &paddle::framework::ir::SetFuseParameterGroupsSize);
188
  m.def("_set_fuse_parameter_memory_size",
189
        &paddle::framework::ir::SetFuseParameterMemorySize);
190

S
sneaxiy 已提交
191 192 193
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

194 195 196 197 198 199 200
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

S
silingtong123 已提交
201 202
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

203
  BindImperative(&m);
204

205
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
206
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
207 208
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
209
      .def("_get_dims",
210
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
211
      .def("_set_dims",
Q
qijun 已提交
212
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
213
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
214
           })
Y
yuyang18 已提交
215
      .def("_set_layout",
D
dzhwinter 已提交
216 217 218
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
219
      .def("_alloc_float",
D
dzhwinter 已提交
220
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
221
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
222
           })
Y
yuyang18 已提交
223
      .def("_alloc_float",
Y
Yu Yang 已提交
224
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
225
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
226
           })
Y
yuyang18 已提交
227
      .def("_alloc_int",
Y
Yu Yang 已提交
228
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
229
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
230
           })
Y
yuyang18 已提交
231
      .def("_alloc_int",
D
dzhwinter 已提交
232
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
233
             self.mutable_data<int>(place);
Q
qijun 已提交
234
           })
Y
yuyang18 已提交
235
      .def("_alloc_int",
C
chengduoZH 已提交
236 237 238
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
239
      .def("_alloc_float",
C
chengduoZH 已提交
240 241 242
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
243
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
244 245
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
246
      .def("set", PyCPUTensorSetFromArray<double>)
247
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
248
      .def("set", PyCPUTensorSetFromArray<bool>)
249
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
250
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
251
      .def("set", PyCPUTensorSetFromArray<int8_t>)
252
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
253 254
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
255
      .def("set", PyCUDATensorSetFromArray<double>)
256
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
257
      .def("set", PyCUDATensorSetFromArray<bool>)
258
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
259
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
260
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
261 262 263 264 265 266
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
267
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
268
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
269
#endif
270
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
271 272 273 274
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
275
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
276
      .def("_dtype", [](Tensor &self) { return self.type(); })
277 278 279 280 281 282
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
283

X
Xin Pan 已提交
284 285 286 287 288 289 290 291 292
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

293 294
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
295
    described by x.lod.
X
Xin Pan 已提交
296

Z
Zeng Jinle 已提交
297 298 299
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
300

Z
Zeng Jinle 已提交
301
    x.lod  = [[2, 3]]
302

Z
Zeng Jinle 已提交
303
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
304

Z
Zeng Jinle 已提交
305
    x.shape = [5, 2]
X
Xin Pan 已提交
306

Z
Zeng Jinle 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
324 325 326 327 328 329 330 331 332 333 334 335

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
336
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
337 338 339 340 341 342 343 344 345 346 347 348 349 350
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
351
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
352 353 354 355 356
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
357
      .def("set_lod",
358
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
359
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
360
             LoD new_lod;
361 362
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
363 364
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
365
             self.set_lod(new_lod);
S
sneaxiy 已提交
366 367 368 369 370 371
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
372 373 374 375 376 377 378 379 380 381

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
382
           )DOC")
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
398 399 400 401
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
402
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
403 404
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
405 406

           Args:
407
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
408 409 410 411 412 413 414 415 416 417

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
418
           )DOC")
419 420 421 422 423 424 425 426
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
427 428 429 430 431 432
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
433 434 435 436 437 438 439 440 441 442 443

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
444
           )DOC")
G
gongweibao 已提交
445
      // Set above comments of set_lod.
446 447 448 449 450 451 452 453
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
454 455 456 457 458
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
459
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
460 461 462 463 464 465 466 467 468 469 470

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
471 472 473 474 475 476 477 478 479 480 481 482
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
483 484 485 486 487 488 489 490 491 492 493

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
494 495 496 497 498 499 500
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
501 502 503 504 505 506
           )DOC")
      .def("__str__", [](const LoDTensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
D
dangqingqing 已提交
507

Q
qijun 已提交
508 509 510 511 512 513 514 515 516 517 518
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
519 520
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
521 522
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
523 524 525 526 527 528 529 530 531
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
532
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
533
      .def("rows", [](SelectedRows &self) {
534 535 536 537 538
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
539
      });
Q
qijun 已提交
540

541
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
542 543 544

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
545
      .def(py::init<>())
546
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
547
      .def("set_int",
548 549
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
550 551 552 553 554 555 556
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
557
      .def("get_tensor",
558 559
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
560 561
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
562 563 564
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
565 566 567 568 569
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
570 571 572
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
573
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
574 575 576 577 578
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
579
#endif
Y
Refine  
Yu Yang 已提交
580 581 582 583 584
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
585
           py::return_value_policy::reference);
586

S
sneaxiy 已提交
587
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
588

S
sneaxiy 已提交
589 590 591 592
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
593

S
sneaxiy 已提交
594 595
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
596
      .def("push",
S
sneaxiy 已提交
597
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
598
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
599
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
600
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
601
           })
S
sneaxiy 已提交
602 603 604 605
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
606

S
sneaxiy 已提交
607
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
608 609
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
610
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
611 612 613 614
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
615
        py::return_value_policy::copy);
S
sneaxiy 已提交
616

S
sneaxiy 已提交
617
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

631
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
632 633 634 635 636 637
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
638 639
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
640
      .def("var",
641
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
642
             return self.Var(name);
Y
Yu Yang 已提交
643
           },
S
sneaxiy 已提交
644 645
           py::arg("name"),
           R"DOC(
646
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
647

648
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
649
           current scope, the variable would be created. Otherwise,
650
           return the existing variable.
S
sneaxiy 已提交
651 652

           Args:
653 654
               name (str): the variable name.

S
sneaxiy 已提交
655
           Returns:
656
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
657 658 659 660
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
661
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
662
           its parent scope. Return None if not found.
663

S
sneaxiy 已提交
664 665
           Args:
               name (str): the variable name.
666

S
sneaxiy 已提交
667
           Returns:
668
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
669
           )DOC",
670
           py::return_value_policy::reference)
671
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
672 673 674 675 676 677
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
678
           py::return_value_policy::reference)
S
sneaxiy 已提交
679 680 681
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
682 683
           )DOC")
      .def("_kids", &Scope::kids);
684

S
sneaxiy 已提交
685 686 687 688 689 690
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
691 692
        R"DOC(
        Create a new scope.
693

S
sneaxiy 已提交
694 695 696
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
697 698
        py::return_value_policy::reference);

Y
Yu Yang 已提交
699 700
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
701 702
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
703 704 705 706 707 708 709 710 711 712
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
713 714
    return ret_values;
  });
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
731
  m.def("prune", [](const ProgramDesc &origin,
732
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
733
    ProgramDesc prog_with_targets(origin);
734
    for (const auto &t : targets) {
735
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
736
    }
737
    proto::ProgramDesc pruned_desc;
738
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
739
    return new ProgramDesc(pruned_desc);
740
  });
741 742 743 744
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
745 746 747
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
748 749
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
750
  // clang-format off
Y
Yu Yang 已提交
751
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
752 753
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
754
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
755 756 757
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
758
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
759
                      -> paddle::platform::DeviceContext* {
760
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
761
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
762
#else
Q
qijun 已提交
763
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
764
#endif
C
chengduoZH 已提交
765 766 767 768 769 770 771 772 773 774 775
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
776
// clang-format on
P
peizhilin 已提交
777
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
778 779
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
780 781 782 783
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
784 785 786 787

    Examples:
        .. code-block:: python

788
          import paddle.fluid as fluid
L
lujun 已提交
789 790
          gpu_place = fluid.CUDAPlace(0)

791
        )DOC")
S
sneaxiy 已提交
792 793 794
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
819 820
             new (&self) platform::CUDAPlace(dev_id);
#else
821 822 823 824 825 826 827 828 829
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
830 831
#endif
           })
S
sneaxiy 已提交
832 833 834 835 836 837
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
838
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
839

840 841 842
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
843 844 845 846

    Examples:
        .. code-block:: python

847
          import paddle.fluid as fluid
L
lujun 已提交
848 849
          cpu_place = fluid.CPUPlace()

850
        )DOC")
851
      .def(py::init<>())
S
sneaxiy 已提交
852 853 854 855 856 857
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
858
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
859

860 861 862
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
863 864 865 866

    Examples:
        .. code-block:: python

867
          import paddle.fluid as fluid
L
lujun 已提交
868 869
          place = fluid.CUDAPinnedPlace()

870
        )DOC")
S
sneaxiy 已提交
871
      .def("__init__",
S
sneaxiy 已提交
872
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
873 874 875
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
876
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
877
           })
S
sneaxiy 已提交
878 879 880 881 882 883 884 885
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
886 887
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
888 889
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
890 891 892 893 894
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
895 896
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
897 898 899 900 901 902
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
903 904 905 906
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
907 908
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
909 910 911 912 913
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
914
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
915
             self = gpu_place;
C
chengduoZH 已提交
916 917
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
918 919
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
920
      });
Y
Yu Yang 已提交
921

Y
Yu Yang 已提交
922 923 924
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
925
                    proto::OpDesc desc;
Y
Yu Yang 已提交
926 927 928 929 930
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
931
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
932
                  })
933
      .def("run",
934
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
935 936 937
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
938
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
939 940 941 942 943
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
944 945 946 947 948 949 950
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
951 952
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
953
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
954
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
955 956 957 958
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
959

960 961 962
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
963
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
964
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
965
      .def("close", &Executor::Close)
966 967 968 969 970 971 972 973 974 975 976 977 978 979
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
980 981 982 983 984 985 986 987
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
988 989
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
990 991
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
992
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
993 994
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
995
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
996 997
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
998
      });
S
sneaxiy 已提交
999

D
dzhwinter 已提交
1000
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1001
  m.def("init_glog", framework::InitGLOG);
1002
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1003 1004
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1005

1006
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1007
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1008
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1009
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1010
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1011 1012 1013 1014 1015 1016
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1017

1018
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1019
  m.def("get_fetch_variable", framework::GetFetchVariable);
1020
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1021

X
Xin Pan 已提交
1022 1023
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1024 1025 1026 1027 1028
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1029

Y
Yu Yang 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1039 1040 1041 1042 1043
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1044

Z
Zeng Jinle 已提交
1045 1046 1047 1048
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1049 1050
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1061 1062 1063 1064 1065 1066
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1081

D
dzhwinter 已提交
1082 1083 1084
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1085
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1086
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1087
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1088

P
peizhilin 已提交
1089
#ifndef _WIN32
D
dangqingqing 已提交
1090 1091 1092
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1093
#endif
P
peizhilin 已提交
1094
#endif
Y
Yu Yang 已提交
1095

1096 1097 1098 1099
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1100
      .value("kAll", platform::ProfilerState::kAll)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1114
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1115
  m.def("reset_profiler", platform::ResetProfiler);
1116
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1117 1118 1119
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1120

1121 1122
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1123
      .def("has", &ir::Pass::Has)
1124 1125 1126
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1127
           })
1128
      .def(
1129
          "set",
1130 1131 1132
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1133 1134
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1135 1136
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1137
        self.Apply(graph.get());
F
flame 已提交
1138
      });
1139

X
fix  
Xin Pan 已提交
1140 1141
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1156
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1157

Y
yuyang18 已提交
1158
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1159 1160 1161 1162
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1163 1164 1165
    Examples:
        .. code-block:: python

1166
          import paddle.fluid as fluid
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1177 1178 1179
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1180 1181
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1182 1183
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1184 1185
        )DOC");

Y
yuyang18 已提交
1186
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1187 1188 1189 1190 1191
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1202
      .def_property(
1203 1204 1205 1206
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1207 1208 1209 1210
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1211 1212 1213 1214 1215
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1216 1217 1218
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1219 1220
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1221 1222 1223 1224 1225 1226 1227
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1228 1229 1230 1231
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1232 1233
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1234 1235 1236 1237 1238 1239

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1240
              )DOC")
Q
Qiao Longfei 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1252 1253 1254 1255 1256
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1257

Y
yuyang18 已提交
1258
  exec_strategy.def_property(
Y
yuyang18 已提交
1259 1260 1261 1262 1263 1264 1265
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1266 1267
      });

C
chengduo 已提交
1268 1269 1270 1271
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1272 1273 1274
    Examples:
        .. code-block:: python

F
flame 已提交
1275 1276 1277
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1278
)DOC");
Y
yuyang18 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1295
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1296
            self.reduce_ = strategy;
C
chengduo 已提交
1297 1298
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
F
flame 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
                'AllReduce' and 'Reduce'. If you want that all the parameters'
                optimization are done on all devices independently, you should choose 'AllReduce';
                if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                to different devices, and then broadcast the optimized parameter to other devices.
                In some models, `Reduce` is faster. Default 'AllReduce'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1312 1313 1314 1315 1316
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1317
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1318
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1319 1320
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
F
flame 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
                ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                Default 'CoeffNumDevice'.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.gradient_scale_strategy = True
                   )DOC")
Y
yuyang18 已提交
1333 1334 1335 1336
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1337
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1338
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1339 1340
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
F
flame 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.debug_graphviz_path = ""
                    )DOC")
S
sneaxiy 已提交
1351 1352 1353 1354 1355 1356
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1357
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1358 1359
            self.enable_sequential_execution_ = b;
          },
F
flame 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1369 1370 1371 1372 1373 1374
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1375
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1376 1377
            self.remove_unnecessary_lock_ = b;
          },
F
flame 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1387 1388 1389 1390
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1391 1392 1393
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1394 1395
            self.num_trainers_ = num_trainers;
          })
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
      .def_property("use_hierarchical_allreduce_",
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
      .def_property("hierarchical_allreduce_inter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })
      .def_property("hierarchical_allreduce_exter_nranks_",
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_exter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_exter_nranks_ = nranks;
                    })

C
chengduo 已提交
1436 1437 1438 1439 1440 1441
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1442
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1443 1444 1445
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1523 1524 1525
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1526
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
1527
          R"DOC(The type is BOOL, memory opitimize aims to save total memory
1528
                consumption, set to True to enable it.
1529 1530

                Memory Optimize is our experimental feature, some variables
1531 1532 1533
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
1534

1535
                Default False)DOC")
1536 1537 1538
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1539 1540 1541 1542 1543 1544 1545 1546 1547
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1548 1549 1550
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1551
      .def_property(
D
dzhwinter 已提交
1552 1553 1554
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1555 1556 1557 1558
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1559 1560 1561 1562 1563 1564 1565
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1566 1567 1568 1569
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1570 1571 1572 1573 1574 1575 1576 1577 1578
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1579
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1580
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1581 1582 1583 1584 1585
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1586 1587

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1588
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1589
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1590
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1591 1592 1593 1594
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1595 1596 1597 1598 1599
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1600 1601 1602
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1603 1604 1605 1606
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1607 1608 1609 1610 1611 1612
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1613

1614
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1615
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1616
  BindFleetWrapper(&m);
W
wopeizl 已提交
1617
#ifndef _WIN32
D
dongdaxiang 已提交
1618
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1619
#endif
F
flame 已提交
1620 1621
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1622
  BindInferenceApi(&m);
1623
  BindDataset(&m);
1624 1625 1626
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1627
}
1628
}  // namespace pybind
1629
}  // namespace paddle