device_context.cc 33.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
qijun 已提交
4 5 6 7
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
qijun 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/device_context.h"
16

W
Wilber 已提交
17
#include <functional>
18
#include <memory>
19
#include <set>
20

21 22 23 24 25
#include "glog/logging.h"
#include "paddle/fluid/framework/expect.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
W
Wilber 已提交
26
#include "paddle/fluid/platform/place.h"
27 28
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
W
Wilber 已提交
29
#include "paddle/fluid/platform/stream/cuda_stream.h"
30 31
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/allocator.h"
32

33
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
34
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/platform/cuda_device_guard.h"
36
#endif
37

F
fwenguang 已提交
38 39 40 41
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#include "paddle/fluid/platform/device/mlu/device_context_allocator.h"
#endif
42

43 44 45 46 47
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
48
  if (size == 0) {
49 50
    return Alloc(place, size);
  }
51 52

  if (platform::is_gpu_place(place)) {
53
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
54 55 56 57 58
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
59 60
      return paddle::memory::Alloc(desired_dev_ctx.GetPlace(),
                                   size,
61 62
                                   phi::Stream(reinterpret_cast<phi::StreamId>(
                                       desired_dev_ctx.stream())));
63 64 65 66 67 68 69 70 71 72 73 74
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
75 76
    return Alloc(place, size);
#else
77 78 79
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
F
fwenguang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    auto* default_dev_ctx = static_cast<platform::MLUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::MLUDeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::MLUDeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use MLU device since it's not compiled with MLU,"
        "Please recompile or reinstall Paddle with MLU support."));
97
#endif
98 99 100
  } else {
    return Alloc(place, size);
  }
101 102 103 104 105
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
106 107 108
namespace paddle {
namespace platform {

109
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
110 111 112
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
113 114 115 116

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
117 118
#endif  // PADDLE_WITH_CUDA

119 120 121 122 123 124 125
DeviceType Place2DeviceType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return platform::DeviceType::CPU;
  } else if (platform::is_gpu_place(place)) {
    return platform::DeviceType::CUDA;
  } else if (platform::is_xpu_place(place)) {
    return platform::DeviceType::XPU;
126 127
  } else if (platform::is_ipu_place(place)) {
    return platform::DeviceType::IPU;
128 129
  } else if (platform::is_npu_place(place)) {
    return platform::DeviceType::NPU;
F
fwenguang 已提交
130 131
  } else if (platform::is_mlu_place(place)) {
    return platform::DeviceType::MLU;
132 133 134 135 136 137
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported place %s to convert into platform::DeviceType.", place));
  }
}

D
dzhwinter 已提交
138
DeviceContextPool* DeviceContextPool::pool = nullptr;
139 140 141
thread_local const std::map<Place,
                            std::shared_future<std::unique_ptr<DeviceContext>>>*
    DeviceContextPool::external_device_contexts_ = nullptr;
D
dzhwinter 已提交
142

Y
Yu Yang 已提交
143
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
144
  VLOG(6) << "DeviceContextPool Get: " << place;
145 146 147 148 149 150 151 152 153 154
  const std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
      ptr;
  if (external_device_contexts_ && external_device_contexts_->count(place)) {
    ptr = external_device_contexts_;
  } else {
    ptr = &device_contexts_;
  }

  auto it = ptr->find(place);
  if (it == ptr->end()) {
G
GaoWei8 已提交
155 156
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
F
fwenguang 已提交
157 158
        "with WITH_GPU, WITH_XPU, WITH_IPU, WITH_MLU or WITH_ASCEND_CL option "
        "or check "
J
jianghaicheng 已提交
159 160
        "that your train process set the correct device id if you use "
        "Executor.",
G
GaoWei8 已提交
161
        place));
D
dzhwinter 已提交
162
  }
163
  return it->second.get().get();
D
dzhwinter 已提交
164 165
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
size_t DeviceContextPool::size() const {
  if (external_device_contexts_) {
    return external_device_contexts_->size();
  }
  return device_contexts_.size();
}

const std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>&
DeviceContextPool::device_contexts() const {
  if (external_device_contexts_) {
    return *external_device_contexts_;
  }
  return device_contexts_;
}

void DeviceContextPool::SetDeviceContexts(
    const std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        dev_ctxs) {
  external_device_contexts_ = dev_ctxs;
}

W
Wilber 已提交
187
template <typename DevCtx>
188 189 190
std::unique_ptr<DeviceContext> CreateDeviceContext(
    const platform::Place& p,
    bool disable_setting_default_stream_for_allocator = false) {
191
  using PtrType = std::unique_ptr<DeviceContext>;
192 193
  auto* dev_ctx = new DevCtx(p);
  if (is_gpu_place(p)) {
194
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    auto* cuda_ctx = dynamic_cast<CUDADeviceContext*>(dev_ctx);
    PADDLE_ENFORCE_NOT_NULL(
        cuda_ctx,
        platform::errors::InvalidArgument(
            "Failed to dynamic_cast dev_ctx into CUDADeviceContext."));

    auto& instance = memory::allocation::AllocatorFacade::Instance();
    if (!disable_setting_default_stream_for_allocator) {
      instance.SetDefaultStream(CUDAPlace(p.GetDeviceId()), cuda_ctx->stream());
    }
    dev_ctx->SetAllocator(instance.GetAllocator(p).get());
    dev_ctx->SetPinnedAllocator(
        instance.GetAllocator(paddle::platform::CUDAPinnedPlace()).get());

    cuda_ctx->PartialInitWithAllocator();
    dev_ctx->SetGenerator(
        framework::DefaultCUDAGenerator(p.GetDeviceId()).get());
212
#endif
213 214 215 216 217 218 219 220 221 222 223 224 225
  } else {
    dev_ctx->SetAllocator(
        memory::allocation::AllocatorFacade::Instance().GetAllocator(p).get());
    dev_ctx->SetGenerator(framework::DefaultCPUGenerator().get());
  }
  dev_ctx->SetHostGenerator(framework::DefaultCPUGenerator().get());
  dev_ctx->SetHostAllocator(memory::allocation::AllocatorFacade::Instance()
                                .GetAllocator(platform::CPUPlace())
                                .get());
  dev_ctx->SetZeroAllocator(memory::allocation::AllocatorFacade::Instance()
                                .GetZeroAllocator(p)
                                .get());
  return PtrType(dev_ctx);
C
chengduozh 已提交
226 227
}

228 229 230 231
template <typename DevCtx>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        place_to_device_context,
232 233
    platform::Place place,
    bool disable_setting_default_stream_for_allocator) {
234 235
  // lazy evaluation. i.e., only create device context at first `Get`
  place_to_device_context->emplace(
236 237 238 239 240
      place,
      std::async(std::launch::deferred,
                 CreateDeviceContext<DevCtx>,
                 place,
                 disable_setting_default_stream_for_allocator));
241 242 243 244 245 246 247
}

void EmplaceDeviceContexts(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        place_to_device_context,
    const std::vector<platform::Place>& places,
    bool disable_setting_default_stream_for_allocator) {
G
GaoWei8 已提交
248
  PADDLE_ENFORCE_GT(
249 250
      places.size(),
      0,
G
GaoWei8 已提交
251 252 253
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
254

255
  std::set<Place> set;
Y
Yu Yang 已提交
256 257 258
  for (auto& p : places) {
    set.insert(p);
  }
259

Y
Yu Yang 已提交
260 261
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
262
#ifdef PADDLE_WITH_MKLDNN
263
      EmplaceDeviceContext<MKLDNNDeviceContext>(
264 265
          place_to_device_context,
          p,
266
          disable_setting_default_stream_for_allocator);
267
#else
L
Leo Chen 已提交
268
      EmplaceDeviceContext<phi::CPUContext>(
269 270
          place_to_device_context,
          p,
271
          disable_setting_default_stream_for_allocator);
272
#endif
Y
Yu Yang 已提交
273
    } else if (platform::is_gpu_place(p)) {
274
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
275
      EmplaceDeviceContext<CUDADeviceContext>(
276 277
          place_to_device_context,
          p,
278
          disable_setting_default_stream_for_allocator);
D
dzhwinter 已提交
279
#else
G
GaoWei8 已提交
280 281 282
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
283 284
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
285
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
286
      EmplaceDeviceContext<CUDAPinnedDeviceContext>(
287 288
          place_to_device_context,
          p,
289
          disable_setting_default_stream_for_allocator);
C
chengduoZH 已提交
290
#else
G
GaoWei8 已提交
291
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
292 293
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
294 295 296
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
297
      EmplaceDeviceContext<XPUDeviceContext>(
298 299
          place_to_device_context,
          p,
300
          disable_setting_default_stream_for_allocator);
301 302 303 304
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
F
fwenguang 已提交
305 306 307
#endif
    } else if (platform::is_mlu_place(p)) {
#ifdef PADDLE_WITH_MLU
308
      EmplaceDeviceContext<MLUDeviceContext>(
309 310
          place_to_device_context,
          p,
311
          disable_setting_default_stream_for_allocator);
F
fwenguang 已提交
312 313 314 315
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("MLUPlace is not supported. Please "
                                          "re-compile with WITH_MLU option."));
J
jianghaicheng 已提交
316 317 318
#endif
    } else if (platform::is_ipu_place(p)) {
#ifdef PADDLE_WITH_IPU
319
      EmplaceDeviceContext<IPUDeviceContext>(
320 321
          place_to_device_context,
          p,
322
          disable_setting_default_stream_for_allocator);
J
jianghaicheng 已提交
323 324 325 326
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("IPUPlace is not supported. Please "
                                          "re-compile with WITH_IPU option."));
327 328 329
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
330
      EmplaceDeviceContext<NPUDeviceContext>(
331 332
          place_to_device_context,
          p,
333
          disable_setting_default_stream_for_allocator);
334 335 336 337
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
338 339 340
#endif
    } else if (platform::is_npu_pinned_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
341
      EmplaceDeviceContext<NPUPinnedDeviceContext>(
342 343
          place_to_device_context,
          p,
344
          disable_setting_default_stream_for_allocator);
345 346 347 348 349
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPinnedPlace is not supported. Please re-compile with "
          "WITH_ASCEND_CL "
          "option."));
350 351 352
#endif
    } else if (platform::is_custom_place(p)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
353
      EmplaceDeviceContext<CustomDeviceContext>(
354 355
          place_to_device_context,
          p,
356
          disable_setting_default_stream_for_allocator);
357 358 359 360 361
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported. Please re-compile with "
          "WITH_CUSTOM_DEVICE "
          "option."));
D
dzhwinter 已提交
362 363 364 365 366
#endif
    }
  }
}

367 368
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
369 370
  EmplaceDeviceContexts(&device_contexts_,
                        places,
371 372 373
                        /*disable_setting_default_stream_for_allocator=*/false);
}

J
jianghaicheng 已提交
374
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
375
IPUDeviceContext::IPUDeviceContext(IPUPlace place) : place_(place) {}
J
jianghaicheng 已提交
376

W
Wilber 已提交
377
const Place& IPUDeviceContext::GetPlace() const { return place_; }
A
Allen Guo 已提交
378

J
jianghaicheng 已提交
379 380 381 382 383 384 385
void IPUDeviceContext::Wait() const {
  /*! \brief  Wait for all operations completion in the stream. */
}

IPUDeviceContext::~IPUDeviceContext() {}

#endif
386
#ifdef PADDLE_WITH_XPU
387 388
XPUDeviceContext::XPUDeviceContext() : phi::XPUContext() {
  phi::XPUContext::Init();
W
Wilber 已提交
389
}
390

391
XPUDeviceContext::~XPUDeviceContext() {}
392

393 394
XPUDeviceContext::XPUDeviceContext(XPUPlace place) : phi::XPUContext(place) {
  phi::XPUContext::Init();
395
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: "
W
Wilber 已提交
396
                          << static_cast<int>(place.device);
397 398 399
}
#endif

400 401 402 403 404 405 406
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
407
  platform::GetCurrentNPUContext(&context_);
408 409 410 411 412 413 414
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
415

416
void NPUDeviceContext::Wait() const {
417 418
  platform::RecordEvent record_event(
      "NPUDeviceContext/wait", platform::TracerEventType::UserDefined, 2);
419 420
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
421 422 423 424
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

W
Wilber 已提交
425
const Place& NPUDeviceContext::GetPlace() const { return place_; }
426 427

aclrtContext NPUDeviceContext::context() const { return context_; }
428 429 430 431 432 433 434 435 436 437 438 439 440 441

NPUPinnedDeviceContext::NPUPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

NPUPinnedDeviceContext::NPUPinnedDeviceContext(NPUPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* NPUPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
442
const Place& NPUPinnedDeviceContext::GetPlace() const { return place_; }
443

444 445 446
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
447 448 449 450 451 452 453
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

454
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
455 456 457 458 459
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

460
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
461

462 463 464
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
465
  const cudaDeviceProp& deviceProperties() const override {
466
#endif
Q
init  
qijun 已提交
467 468 469 470
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
471 472 473
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
474 475 476
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
477
    void* retv = buf->ptr();
S
sneaxiy 已提交
478 479 480 481
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
482
    return retv;
Q
init  
qijun 已提交
483 484
  }

S
sneaxiy 已提交
485 486 487 488 489 490
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
491 492 493

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
494
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
495 496 497 498 499 500
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
501
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
502
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
503
#ifdef PADDLE_WITH_HIP
504
      PADDLE_ENFORCE_GPU_SUCCESS(
505 506
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
507
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
init  
qijun 已提交
508
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
509
#endif
Q
init  
qijun 已提交
510 511 512 513 514
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
515
  CUDAPlace place_;
516 517 518 519
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
520
  const cudaDeviceProp* device_prop_;  // not owned;
521
#endif
Q
qijun 已提交
522
  mutable void* scratch_;
Q
init  
qijun 已提交
523
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
524
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
525
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
526 527
};

528 529 530 531 532 533 534 535 536
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

537 538 539 540 541 542 543 544 545 546 547 548
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
549 550
                         const stream::Priority& priority,
                         const stream::StreamFlag& flag) {
551 552
  place_ = place;
  CUDADeviceGuard guard(place_.device);
553
  stream_.reset(new stream::CUDAStream(place, priority, flag));
554 555 556
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
557
#ifndef PADDLE_WITH_HIP
558 559 560
#if CUDA_VERSION >= 11060
  InitCuBlasLtContext();
#endif
Z
zhangkaihuo 已提交
561
  InitCuSparseContext();
G
Guo Sheng 已提交
562
  InitCuSolverContext();
563
#endif
564 565
}

W
Wilber 已提交
566 567 568 569 570 571
void CUDAContext::SetStream(gpuStream_t stream) {
  if (stream_->raw_stream() != stream) {
    CUDADeviceGuard guard(place_.device);
    DestoryCuDNNContext();
    DestoryCuBlasContext();
#ifndef PADDLE_WITH_HIP
572 573 574
#if CUDA_VERSION >= 11060
    DestoryCuBlasLtContext();
#endif
W
Wilber 已提交
575 576 577 578 579 580 581 582 583
    DestoryCuSolverContext();
#endif

    stream_->SetStream(stream);

    InitEigenContext();
    InitCuBlasContext();
    InitCuDNNContext();
#ifndef PADDLE_WITH_HIP
584 585 586
#if CUDA_VERSION >= 11060
    InitCuBlasLtContext();
#endif
W
Wilber 已提交
587 588 589 590 591
    InitCuSolverContext();
#endif
  }
}

592 593 594 595
CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
596
#ifndef PADDLE_WITH_HIP
597 598 599
#if CUDA_VERSION >= 11060
  InitCuBlasLtContext();
#endif
Z
zhangkaihuo 已提交
600
  DestoryCuSparseContext();
G
Guo Sheng 已提交
601
  DestoryCuSolverContext();
602
#endif
603 604
}

605 606 607
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : phi::GPUContext(place) {
  phi::GPUContext::PartialInitWithoutAllocator();
  cuda_stream_.reset(new stream::CUDAStream(phi::GPUContext::stream(), place));
608 609
}

W
Wilber 已提交
610
CUDADeviceContext::~CUDADeviceContext() = default;
611

612
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
W
Wilber 已提交
613 614 615
  if (thread_ctx_.count(this)) {
    return context()->EigenDevice().get();
  }
616
  return phi::GPUContext::eigen_device();
S
sneaxiy 已提交
617 618
}

W
Wilber 已提交
619
void CUDADeviceContext::Wait() const {
620
  VLOG(4) << "CUDA context(" << this << ")  Wait";
W
Wilber 已提交
621 622 623 624
  if (thread_ctx_.count(this)) {
    context()->Stream()->Wait();
    return;
  }
625
  phi::GPUContext::Wait();
626 627
}

628 629 630
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
631
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
632
#endif
W
Wilber 已提交
633 634 635
  if (thread_ctx_.count(this)) {
    return context()->CudnnHandle();
  }
636
  return phi::GPUContext::cudnn_handle();
637
}
638

639 640
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
641 642 643
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
644
  return phi::GPUContext::cublas_handle();
645 646
}
#else
647
cublasHandle_t CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
648 649 650
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
651
  return phi::GPUContext::cublas_handle();
652
}
653 654 655 656 657 658 659 660
#if CUDA_VERSION >= 11060
cublasLtHandle_t CUDADeviceContext::cublaslt_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CublasLtHandle()->GetCublasLtHandle();
  }
  return phi::GPUContext::cublaslt_handle();
}
#endif
Z
zhangkaihuo 已提交
661
cusparseHandle_t CUDADeviceContext::cusparse_handle() const {
W
Wilber 已提交
662 663 664
  if (thread_ctx_.count(this)) {
    return context()->CusparseHandle()->GetCusparseHandle();
  }
665
  return phi::GPUContext::cusparse_handle();
W
Wilber 已提交
666 667 668 669 670
}
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CusolverDnHandle();
  }
671
  return phi::GPUContext::cusolver_dn_handle();
Z
zhangkaihuo 已提交
672
}
673
#endif
674

W
Wilber 已提交
675 676 677 678 679 680
void CUDADeviceContext::RecordEvent(
    gpuEvent_t ev, const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->RecordEvent(ev, callback);
    return;
  }
681
  phi::GPUContext::RecordEvent(ev, callback);
W
Wilber 已提交
682 683 684 685 686 687 688 689
}

void CUDADeviceContext::AddStreamCallback(
    const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->AddCallback(callback);
    return;
  }
690
  phi::GPUContext::AddStreamCallback(callback);
W
Wilber 已提交
691 692 693 694 695 696 697
}

void CUDADeviceContext::WaitStreamCallback() const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->WaitCallback();
    return;
  }
698
  phi::GPUContext::WaitStreamCallback();
W
Wilber 已提交
699 700
}

701
phi::DnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
W
Wilber 已提交
702 703
  if (thread_ctx_.count(this)) {
    // return workspace_.get();
704
    return phi::DnnWorkspaceHandle(
W
Wilber 已提交
705
        memory::allocation::AllocatorFacade::Instance()
706
            .GetAllocator(GetPlace())
707 708
            .get(),
        stream());
W
Wilber 已提交
709
  }
710
  return phi::GPUContext::cudnn_workspace_handle();
711
}
712

W
Wilber 已提交
713 714 715 716
gpuStream_t CUDADeviceContext::stream() const {
  if (thread_ctx_.count(this)) {
    return context()->RawStream();
  }
717
  return phi::GPUContext::stream();
G
Guo Sheng 已提交
718 719
}

W
Wilber 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
std::shared_ptr<CUDAContext> CUDADeviceContext::context() const {
  if (!thread_ctx_.count(this)) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "CUDADeviceContext call context() failed, make sure in the "
        "thread_local semantic."));
  }
  return thread_ctx_.at(this);
}

stream::CUDAStream* CUDADeviceContext::GetCudaStream() const {
  return cuda_stream_.get();
}

stream::CUDAStream* CUDADeviceContext::SetCudaStream(
    stream::CUDAStream* new_stream_ptr) {
  auto* old_stream_ptr = cuda_stream_.release();
  cuda_stream_.reset(new_stream_ptr);
  return old_stream_ptr;
}
Q
qijun 已提交
739

C
chengduoZH 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
753
const Place& CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
754
#endif
Q
qijun 已提交
755

T
tensor-tang 已提交
756 757
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
L
Leo Chen 已提交
758
    : phi::CPUContext(place), p_blobmap_() {
759
  p_blobmap_.reset(new BlobMap());
760
  p_exec_items_.reset(new ExecShape());
761
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
762 763
}

764
MKLDNNDeviceContextThreadLocals::Body::Body()
765
    : cur_engine(dnnl::engine::kind::cpu, 0), cur_stream(cur_engine) {
766 767 768 769 770 771
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

772 773 774 775 776 777 778 779 780 781 782 783
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
784
  dev_ctx->ResetBlobMap(exec_ptr_);
785 786
}

787 788 789 790 791 792 793 794 795 796
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
797 798
  cur_input_shape_str = input_shape_str;
}
799 800
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
801 802
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
803

804 805
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
806 807 808
  cur_paddle_data_layout = dl;
}

809 810
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
811 812 813
  return cur_paddle_data_layout;
}

814 815 816 817 818 819 820 821 822
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

823
const dnnl::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
824 825 826
  return cur_engine;
}

827
dnnl::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
828 829 830
  return cur_stream;
}

831
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
L
Leo Chen 已提交
832
  VLOG(4) << tls().get_curr_exec() << " " << ptr;
833
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
834
  if (block_next_cache_clearing_ == 0) {
835
    VLOG(3) << "Clearing DNNL cache.";
836 837 838 839 840 841
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
842 843 844 845 846
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
847
          (v.first)->erase(v.second);
848 849
        }
        s.second->erase(ptr);
850 851
      }
    }
852 853 854 855
    // Reset paddle layout to NCHW
    VLOG(3) << "Resetting Paddle data layout to NCHW.";
    platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
        paddle::framework::DataLayout::kNCHW);
856
  } else {
857 858 859 860
    --block_next_cache_clearing_;
    VLOG(3) << "Prevented Clearing DNNL cache. Updated "
               "block_next_cache_clearing_ : "
            << block_next_cache_clearing_;
861 862
    PADDLE_ENFORCE_GE(block_next_cache_clearing_,
                      0,
863 864 865 866
                      platform::errors::InvalidArgument(
                          "Cache clearing mark should be non-negative "
                          ". But received %d.",
                          block_next_cache_clearing_));
867 868 869
  }
}

870 871
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
872 873
}

874 875
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
876
  // Take current input shape from TLS
877 878
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
879 880 881 882 883 884 885 886 887
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
888 889
}

890 891
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
892 893 894 895
  ++block_next_cache_clearing_;
  VLOG(3) << "Next DNNL cache clearing has been blocked. Updated "
             "block_next_cache_clearing_ : "
          << block_next_cache_clearing_;
896
}
897

898
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
899
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
900
  BlobMap* pMap = p_blobmap_.get();
901
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
902
  if (map_it == pMap->end()) {
903 904 905
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
906 907 908 909
  }
  return map_it->second->size();
}

910
void MKLDNNDeviceContext::SetBlob(const std::string& name,
911
                                  BlobPtr_t<void> data) const {
912
  BlobMap* pMap = p_blobmap_.get();
913
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
914
  BlobPtr_t<KeyBlob> pBlob = nullptr;
915

916
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
917

918
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
919

920 921
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
922 923 924

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
925
    sBlob = std::make_shared<ShapeBlob>();
926 927
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
928
  } else {
929
    sBlob = map_it->second;
930
  }
T
tensor-tang 已提交
931

932
  // Find KeyBlob for current input shape
933
  auto key_it = sBlob->find(tls().cur_input_shape_str);
934

935
  if (key_it == sBlob->end()) {
936 937
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
938 939
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
940
        sBlob->size() &&
941
        (sBlob->size() >=
942
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
943 944 945 946
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
      RemoveShapeEntriesWithExecutor();
947
    }
948
    pBlob = std::make_shared<KeyBlob>();
949
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
950
  } else {
951
    pBlob = key_it->second;
952 953
  }

954
  // Find Blob via name
955 956 957 958
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
959 960 961
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
962 963 964
  } else {
    blob_it->second = data;  // set data to existing blob
  }
965
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
966
  // lock will be automatically released when out of scope
967
  return;
T
tensor-tang 已提交
968 969
}

970
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
971 972 973
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
974
      num_entries += (l2.second)->size();
975 976 977 978 979
    }
  }
  return num_entries;
}

980
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
981
    const std::string& name) const {
982
  BlobMap* pMap = p_blobmap_.get();
983
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
984
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
985

986
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
987

988
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
989

990 991
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
992 993 994 995
  // (jczaja): After first iteration of model's execution we
  // should have all elements cached (mostly) so failures are unlikely (less
  // likely for dynamic shapes)
  if (unlikely(map_it == pMap->end())) {
996
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
997 998 999 1000 1001
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
1002
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
1003
  if (unlikely(sBlob_it == sBlob->end())) {
1004
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
1005 1006 1007 1008
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
1009 1010

  // Find Blob via name
1011
  auto key_it = pBlob->find(name);
1012

1013
  if (unlikely(key_it == pBlob->end())) {
1014
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
1015 1016
    return nullptr;
  }
1017

1018
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
1019 1020
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
1021 1022
}

1023 1024 1025
#endif

#ifdef PADDLE_WITH_CUSTOM_DEVICE
1026 1027 1028
CustomDeviceContext::CustomDeviceContext(CustomPlace place)
    : phi::CustomContext(place) {
  Init();
1029
  stream_.reset(new phi::stream::Stream(place, stream()));
1030 1031 1032
}

CustomDeviceContext::~CustomDeviceContext() {}
T
tensor-tang 已提交
1033
#endif
Q
qijun 已提交
1034
}  // namespace platform
Q
qijun 已提交
1035
}  // namespace paddle