device_context.cc 31.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
qijun 已提交
4 5 6 7
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
qijun 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14
#include "paddle/fluid/platform/device_context.h"
15

W
Wilber 已提交
16
#include <functional>
17
#include <memory>
18
#include <set>
19

W
Wilber 已提交
20 21
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
22 23
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/allocator.h"
24

25
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
26
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/platform/cuda_device_guard.h"
28
#endif
F
fwenguang 已提交
29 30 31 32
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#include "paddle/fluid/platform/device/mlu/device_context_allocator.h"
#endif
33
#include "glog/logging.h"
34
#include "paddle/fluid/framework/expect.h"
W
Wilber 已提交
35
#include "paddle/fluid/framework/generator.h"
36
#include "paddle/fluid/memory/allocation/allocator_facade.h"
37
#include "paddle/fluid/platform/device/device_wrapper.h"
38
#include "paddle/fluid/platform/profiler.h"
39
#include "paddle/fluid/platform/profiler/event_tracing.h"
40

41 42 43 44 45
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
46
  if (size == 0) {
47 48
    return Alloc(place, size);
  }
49 50

  if (platform::is_gpu_place(place)) {
51
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
70 71
    return Alloc(place, size);
#else
72 73 74
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
F
fwenguang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    auto* default_dev_ctx = static_cast<platform::MLUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::MLUDeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::MLUDeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use MLU device since it's not compiled with MLU,"
        "Please recompile or reinstall Paddle with MLU support."));
92
#endif
93 94 95
  } else {
    return Alloc(place, size);
  }
96 97 98 99 100
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
101 102 103
namespace paddle {
namespace platform {

104
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
105 106 107
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
108 109 110 111

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
112 113
#endif  // PADDLE_WITH_CUDA

114 115 116 117 118 119 120
DeviceType Place2DeviceType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return platform::DeviceType::CPU;
  } else if (platform::is_gpu_place(place)) {
    return platform::DeviceType::CUDA;
  } else if (platform::is_xpu_place(place)) {
    return platform::DeviceType::XPU;
F
fwenguang 已提交
121 122
  } else if (platform::is_mlu_place(place)) {
    return platform::DeviceType::MLU;
123 124 125 126 127 128
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported place %s to convert into platform::DeviceType.", place));
  }
}

D
dzhwinter 已提交
129 130
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
131
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
132
  VLOG(6) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
133 134
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
135 136
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
F
fwenguang 已提交
137 138
        "with WITH_GPU, WITH_XPU, WITH_IPU, WITH_MLU or WITH_ASCEND_CL option "
        "or check "
J
jianghaicheng 已提交
139 140
        "that your train process set the correct device id if you use "
        "Executor.",
G
GaoWei8 已提交
141
        place));
D
dzhwinter 已提交
142
  }
143
  return it->second.get().get();
D
dzhwinter 已提交
144 145
}

W
Wilber 已提交
146
template <typename DevCtx>
147 148 149 150 151
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
152 153 154 155 156 157 158 159 160 161 162 163
  map_ptr->emplace(
      p, std::async(std::launch::deferred, [=] {
        // lazy evaluation. i.e., only create device context at
        // first `Get`
        auto* dev_ctx = new DevCtx(p);
        if (is_gpu_place(p)) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
          auto* cuda_ctx = dynamic_cast<CUDADeviceContext*>(dev_ctx);
          PADDLE_ENFORCE_NOT_NULL(
              cuda_ctx,
              platform::errors::InvalidArgument(
                  "Failed to dynamic_cast dev_ctx into CUDADeviceContext."));
W
Wilber 已提交
164
          dev_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
165
                                    .GetAllocator(p)
W
Wilber 已提交
166
                                    .get());
W
wanghuancoder 已提交
167 168 169 170 171
          dev_ctx->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());

W
Wilber 已提交
172
          cuda_ctx->PartialInitWithAllocator();
W
Wilber 已提交
173
          dev_ctx->SetGenerator(
174
              framework::DefaultCUDAGenerator(p.GetDeviceId()).get());
175 176
#endif
        } else {
W
Wilber 已提交
177 178 179
          dev_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(p)
                                    .get());
W
Wilber 已提交
180
          dev_ctx->SetGenerator(framework::DefaultCPUGenerator().get());
181
        }
L
Leo Chen 已提交
182
        dev_ctx->SetHostGenerator(framework::DefaultCPUGenerator().get());
183 184 185 186 187 188 189 190 191 192
        dev_ctx->SetHostAllocator(
            memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(platform::CPUPlace())
                .get());
        dev_ctx->SetZeroAllocator(
            memory::allocation::AllocatorFacade::Instance()
                .GetZeroAllocator(p)
                .get());
        return PtrType(dev_ctx);
      }));
C
chengduozh 已提交
193 194
}

D
dzhwinter 已提交
195 196
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
197 198 199 200 201
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
202
  std::set<Place> set;
Y
Yu Yang 已提交
203 204 205 206 207
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
208
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
209
      EmplaceDeviceContext<MKLDNNDeviceContext>(&device_contexts_, p);
210
#else
W
Wilber 已提交
211
      EmplaceDeviceContext<CPUDeviceContext>(&device_contexts_, p);
212
#endif
Y
Yu Yang 已提交
213
    } else if (platform::is_gpu_place(p)) {
214
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
Wilber 已提交
215
      EmplaceDeviceContext<CUDADeviceContext>(&device_contexts_, p);
D
dzhwinter 已提交
216
#else
G
GaoWei8 已提交
217 218 219
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
220 221
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
222
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
Wilber 已提交
223
      EmplaceDeviceContext<CUDAPinnedDeviceContext>(&device_contexts_, p);
C
chengduoZH 已提交
224
#else
G
GaoWei8 已提交
225
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
226 227
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
228 229 230
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
231
      EmplaceDeviceContext<XPUDeviceContext>(&device_contexts_, p);
232 233 234 235
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
F
fwenguang 已提交
236 237 238
#endif
    } else if (platform::is_mlu_place(p)) {
#ifdef PADDLE_WITH_MLU
W
Wilber 已提交
239
      EmplaceDeviceContext<MLUDeviceContext>(&device_contexts_, p);
F
fwenguang 已提交
240 241 242 243
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("MLUPlace is not supported. Please "
                                          "re-compile with WITH_MLU option."));
J
jianghaicheng 已提交
244 245 246
#endif
    } else if (platform::is_ipu_place(p)) {
#ifdef PADDLE_WITH_IPU
W
Wilber 已提交
247
      EmplaceDeviceContext<IPUDeviceContext>(&device_contexts_, p);
J
jianghaicheng 已提交
248 249 250 251
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("IPUPlace is not supported. Please "
                                          "re-compile with WITH_IPU option."));
252 253 254
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
W
Wilber 已提交
255
      EmplaceDeviceContext<NPUDeviceContext>(&device_contexts_, p);
256 257 258 259
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
260 261 262
#endif
    } else if (platform::is_npu_pinned_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
W
Wilber 已提交
263
      EmplaceDeviceContext<NPUPinnedDeviceContext>(&device_contexts_, p);
264 265 266 267 268
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPinnedPlace is not supported. Please re-compile with "
          "WITH_ASCEND_CL "
          "option."));
269 270 271 272 273 274 275 276 277
#endif
    } else if (platform::is_custom_place(p)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      EmplaceDeviceContext<CustomDeviceContext>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported. Please re-compile with "
          "WITH_CUSTOM_DEVICE "
          "option."));
D
dzhwinter 已提交
278 279 280 281 282
#endif
    }
  }
}

283 284
CPUDeviceContext::CPUDeviceContext() : phi::CPUContext() {
  phi::CPUContext::Init();
W
Wilber 已提交
285
}
286

287 288
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : phi::CPUContext(place) {
  phi::CPUContext::Init();
W
Wilber 已提交
289
}
290

J
jianghaicheng 已提交
291
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
292
IPUDeviceContext::IPUDeviceContext(IPUPlace place) : place_(place) {}
J
jianghaicheng 已提交
293

W
Wilber 已提交
294
const Place& IPUDeviceContext::GetPlace() const { return place_; }
A
Allen Guo 已提交
295

J
jianghaicheng 已提交
296 297 298 299 300 301 302
void IPUDeviceContext::Wait() const {
  /*! \brief  Wait for all operations completion in the stream. */
}

IPUDeviceContext::~IPUDeviceContext() {}

#endif
303
#ifdef PADDLE_WITH_XPU
304 305
XPUDeviceContext::XPUDeviceContext() : phi::XPUContext() {
  phi::XPUContext::Init();
W
Wilber 已提交
306
}
307

308
XPUDeviceContext::~XPUDeviceContext() {}
309

310 311
XPUDeviceContext::XPUDeviceContext(XPUPlace place) : phi::XPUContext(place) {
  phi::XPUContext::Init();
312
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: "
W
Wilber 已提交
313
                          << static_cast<int>(place.device);
314 315 316
}
#endif

317 318 319 320 321 322 323
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
324
  platform::GetCurrentNPUContext(&context_);
325 326 327 328 329 330 331
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
332

333
void NPUDeviceContext::Wait() const {
334 335
  platform::RecordEvent record_event("NPUDeviceContext/wait",
                                     platform::TracerEventType::UserDefined, 2);
336 337
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
338 339 340 341
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

W
Wilber 已提交
342
const Place& NPUDeviceContext::GetPlace() const { return place_; }
343 344

aclrtContext NPUDeviceContext::context() const { return context_; }
345 346 347 348 349 350 351 352 353 354 355 356 357 358

NPUPinnedDeviceContext::NPUPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

NPUPinnedDeviceContext::NPUPinnedDeviceContext(NPUPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* NPUPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
359
const Place& NPUPinnedDeviceContext::GetPlace() const { return place_; }
360

361 362 363
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
364 365 366 367 368 369 370
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

371
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
372 373 374 375 376
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

377
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
378

379 380 381
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
382
  const cudaDeviceProp& deviceProperties() const override {
383
#endif
Q
init  
qijun 已提交
384 385 386 387
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
388 389 390
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
391 392 393
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
394
    void* retv = buf->ptr();
S
sneaxiy 已提交
395 396 397 398
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
399
    return retv;
Q
init  
qijun 已提交
400 401
  }

S
sneaxiy 已提交
402 403 404 405 406 407
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
408 409 410

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
411
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
412 413 414 415 416 417
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
418
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
419
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
420
#ifdef PADDLE_WITH_HIP
421
      PADDLE_ENFORCE_GPU_SUCCESS(
422 423
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
424
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
init  
qijun 已提交
425
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
426
#endif
Q
init  
qijun 已提交
427 428 429 430 431
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
432
  CUDAPlace place_;
433 434 435 436
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
437
  const cudaDeviceProp* device_prop_;  // not owned;
438
#endif
Q
qijun 已提交
439
  mutable void* scratch_;
Q
init  
qijun 已提交
440
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
441
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
442
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
443 444
};

445 446 447 448 449 450 451 452 453
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

454 455 456 457 458 459 460 461 462 463 464 465
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
466 467
                         const stream::Priority& priority,
                         const stream::StreamFlag& flag) {
468 469
  place_ = place;
  CUDADeviceGuard guard(place_.device);
470
  stream_.reset(new stream::CUDAStream(place, priority, flag));
471 472 473
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
474
#ifndef PADDLE_WITH_HIP
475 476 477
#if CUDA_VERSION >= 11060
  InitCuBlasLtContext();
#endif
Z
zhangkaihuo 已提交
478
  InitCuSparseContext();
G
Guo Sheng 已提交
479
  InitCuSolverContext();
480
#endif
481 482
}

W
Wilber 已提交
483 484 485 486 487 488
void CUDAContext::SetStream(gpuStream_t stream) {
  if (stream_->raw_stream() != stream) {
    CUDADeviceGuard guard(place_.device);
    DestoryCuDNNContext();
    DestoryCuBlasContext();
#ifndef PADDLE_WITH_HIP
489 490 491
#if CUDA_VERSION >= 11060
    DestoryCuBlasLtContext();
#endif
W
Wilber 已提交
492 493 494 495 496 497 498 499 500
    DestoryCuSolverContext();
#endif

    stream_->SetStream(stream);

    InitEigenContext();
    InitCuBlasContext();
    InitCuDNNContext();
#ifndef PADDLE_WITH_HIP
501 502 503
#if CUDA_VERSION >= 11060
    InitCuBlasLtContext();
#endif
W
Wilber 已提交
504 505 506 507 508
    InitCuSolverContext();
#endif
  }
}

509 510 511 512
CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
513
#ifndef PADDLE_WITH_HIP
514 515 516
#if CUDA_VERSION >= 11060
  InitCuBlasLtContext();
#endif
Z
zhangkaihuo 已提交
517
  DestoryCuSparseContext();
G
Guo Sheng 已提交
518
  DestoryCuSolverContext();
519
#endif
520 521
}

522 523 524
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : phi::GPUContext(place) {
  phi::GPUContext::PartialInitWithoutAllocator();
  cuda_stream_.reset(new stream::CUDAStream(phi::GPUContext::stream(), place));
525 526
  auto& instance = memory::allocation::AllocatorFacade::Instance();
  instance.SetDefaultStream(place, phi::GPUContext::stream());
527 528
  workspace_.reset(new phi::DnnWorkspaceHandle(
      instance.GetAllocator(place).get(), stream()));
529 530
}

W
Wilber 已提交
531
CUDADeviceContext::~CUDADeviceContext() = default;
532

533
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
W
Wilber 已提交
534 535 536
  if (thread_ctx_.count(this)) {
    return context()->EigenDevice().get();
  }
537
  return phi::GPUContext::eigen_device();
S
sneaxiy 已提交
538 539
}

W
Wilber 已提交
540
void CUDADeviceContext::Wait() const {
541
  VLOG(4) << "CUDA context(" << this << ")  Wait";
W
Wilber 已提交
542 543 544 545
  if (thread_ctx_.count(this)) {
    context()->Stream()->Wait();
    return;
  }
546
  phi::GPUContext::Wait();
547 548
}

549 550 551
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
552
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
553
#endif
W
Wilber 已提交
554 555 556
  if (thread_ctx_.count(this)) {
    return context()->CudnnHandle();
  }
557
  return phi::GPUContext::cudnn_handle();
558
}
559

560 561
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
562 563 564
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
565
  return phi::GPUContext::cublas_handle();
566 567
}
#else
568
cublasHandle_t CUDADeviceContext::cublas_handle() const {
W
Wilber 已提交
569 570 571
  if (thread_ctx_.count(this)) {
    return context()->CublasHandle()->GetCublasHandle();
  }
572
  return phi::GPUContext::cublas_handle();
573
}
574 575 576 577 578 579 580 581
#if CUDA_VERSION >= 11060
cublasLtHandle_t CUDADeviceContext::cublaslt_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CublasLtHandle()->GetCublasLtHandle();
  }
  return phi::GPUContext::cublaslt_handle();
}
#endif
Z
zhangkaihuo 已提交
582
cusparseHandle_t CUDADeviceContext::cusparse_handle() const {
W
Wilber 已提交
583 584 585
  if (thread_ctx_.count(this)) {
    return context()->CusparseHandle()->GetCusparseHandle();
  }
586
  return phi::GPUContext::cusparse_handle();
W
Wilber 已提交
587 588 589 590 591
}
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  if (thread_ctx_.count(this)) {
    return context()->CusolverDnHandle();
  }
592
  return phi::GPUContext::cusolver_dn_handle();
Z
zhangkaihuo 已提交
593
}
594
#endif
595

W
Wilber 已提交
596 597 598 599 600 601
void CUDADeviceContext::RecordEvent(
    gpuEvent_t ev, const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->RecordEvent(ev, callback);
    return;
  }
602
  phi::GPUContext::RecordEvent(ev, callback);
W
Wilber 已提交
603 604 605 606 607 608 609 610
}

void CUDADeviceContext::AddStreamCallback(
    const std::function<void()>& callback) const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->AddCallback(callback);
    return;
  }
611
  phi::GPUContext::AddStreamCallback(callback);
W
Wilber 已提交
612 613 614 615 616 617 618
}

void CUDADeviceContext::WaitStreamCallback() const {
  if (thread_ctx_.count(this)) {
    context()->Stream()->WaitCallback();
    return;
  }
619
  phi::GPUContext::WaitStreamCallback();
W
Wilber 已提交
620 621
}

622
phi::DnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
W
Wilber 已提交
623 624
  if (thread_ctx_.count(this)) {
    // return workspace_.get();
625
    return phi::DnnWorkspaceHandle(
W
Wilber 已提交
626
        memory::allocation::AllocatorFacade::Instance()
627
            .GetAllocator(GetPlace())
628 629
            .get(),
        stream());
W
Wilber 已提交
630
  }
631
  return phi::GPUContext::cudnn_workspace_handle();
632
}
633

W
Wilber 已提交
634 635 636 637
gpuStream_t CUDADeviceContext::stream() const {
  if (thread_ctx_.count(this)) {
    return context()->RawStream();
  }
638
  return phi::GPUContext::stream();
G
Guo Sheng 已提交
639 640
}

W
Wilber 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
std::shared_ptr<CUDAContext> CUDADeviceContext::context() const {
  if (!thread_ctx_.count(this)) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "CUDADeviceContext call context() failed, make sure in the "
        "thread_local semantic."));
  }
  return thread_ctx_.at(this);
}

stream::CUDAStream* CUDADeviceContext::GetCudaStream() const {
  return cuda_stream_.get();
}

stream::CUDAStream* CUDADeviceContext::SetCudaStream(
    stream::CUDAStream* new_stream_ptr) {
  auto* old_stream_ptr = cuda_stream_.release();
  cuda_stream_.reset(new_stream_ptr);
  return old_stream_ptr;
}
Q
qijun 已提交
660

C
chengduoZH 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

W
Wilber 已提交
674
const Place& CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
675
#endif
Q
qijun 已提交
676

T
tensor-tang 已提交
677 678
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
679
    : CPUDeviceContext(place), p_blobmap_() {
680
  p_blobmap_.reset(new BlobMap());
681
  p_exec_items_.reset(new ExecShape());
682
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
683 684
}

685
MKLDNNDeviceContextThreadLocals::Body::Body()
686
    : cur_engine(dnnl::engine::kind::cpu, 0), cur_stream(cur_engine) {
687 688 689 690 691 692
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

693 694 695 696 697 698 699 700 701 702 703 704
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
705
  dev_ctx->ResetBlobMap(exec_ptr_);
706 707
}

708 709 710 711 712 713 714 715 716 717
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
718 719
  cur_input_shape_str = input_shape_str;
}
720 721
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
722 723
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
724

725 726
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
727 728 729
  cur_paddle_data_layout = dl;
}

730 731
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
732 733 734
  return cur_paddle_data_layout;
}

735 736 737 738 739 740 741 742 743
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

744
const dnnl::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
745 746 747
  return cur_engine;
}

748
dnnl::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
749 750 751
  return cur_stream;
}

752
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
L
Leo Chen 已提交
753
  VLOG(4) << tls().get_curr_exec() << " " << ptr;
754
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
755
  if (block_next_cache_clearing_ == 0) {
756
    VLOG(3) << "Clearing DNNL cache.";
757 758 759 760 761 762
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
763 764 765 766 767
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
768
          (v.first)->erase(v.second);
769 770
        }
        s.second->erase(ptr);
771 772
      }
    }
773 774 775 776
    // Reset paddle layout to NCHW
    VLOG(3) << "Resetting Paddle data layout to NCHW.";
    platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
        paddle::framework::DataLayout::kNCHW);
777
  } else {
778 779 780 781 782 783 784 785 786
    --block_next_cache_clearing_;
    VLOG(3) << "Prevented Clearing DNNL cache. Updated "
               "block_next_cache_clearing_ : "
            << block_next_cache_clearing_;
    PADDLE_ENFORCE_GE(block_next_cache_clearing_, 0,
                      platform::errors::InvalidArgument(
                          "Cache clearing mark should be non-negative "
                          ". But received %d.",
                          block_next_cache_clearing_));
787 788 789
  }
}

790 791
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
792 793
}

794 795
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
796
  // Take current input shape from TLS
797 798
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
799 800 801 802 803 804 805 806 807
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
808 809
}

810 811
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
812 813 814 815
  ++block_next_cache_clearing_;
  VLOG(3) << "Next DNNL cache clearing has been blocked. Updated "
             "block_next_cache_clearing_ : "
          << block_next_cache_clearing_;
816
}
817

818
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
819
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
820
  BlobMap* pMap = p_blobmap_.get();
821
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
822
  if (map_it == pMap->end()) {
823 824 825
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
826 827 828 829
  }
  return map_it->second->size();
}

830
void MKLDNNDeviceContext::SetBlob(const std::string& name,
831
                                  BlobPtr_t<void> data) const {
832
  BlobMap* pMap = p_blobmap_.get();
833
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
834
  BlobPtr_t<KeyBlob> pBlob = nullptr;
835

836
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
837

838
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
839

840 841
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
842 843 844

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
845
    sBlob = std::make_shared<ShapeBlob>();
846 847
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
848
  } else {
849
    sBlob = map_it->second;
850
  }
T
tensor-tang 已提交
851

852
  // Find KeyBlob for current input shape
853
  auto key_it = sBlob->find(tls().cur_input_shape_str);
854

855
  if (key_it == sBlob->end()) {
856 857
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
858 859
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
860
        sBlob->size() &&
861
        (sBlob->size() >=
862
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
863 864 865 866
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
      RemoveShapeEntriesWithExecutor();
867
    }
868
    pBlob = std::make_shared<KeyBlob>();
869
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
870
  } else {
871
    pBlob = key_it->second;
872 873
  }

874
  // Find Blob via name
875 876 877 878
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
879 880 881
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
882 883 884
  } else {
    blob_it->second = data;  // set data to existing blob
  }
885
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
886
  // lock will be automatically released when out of scope
887
  return;
T
tensor-tang 已提交
888 889
}

890
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
891 892 893
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
894
      num_entries += (l2.second)->size();
895 896 897 898 899
    }
  }
  return num_entries;
}

900
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
901
    const std::string& name) const {
902
  BlobMap* pMap = p_blobmap_.get();
903
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
904
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
905

906
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
907

908
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
909

910 911
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
912 913 914 915
  // (jczaja): After first iteration of model's execution we
  // should have all elements cached (mostly) so failures are unlikely (less
  // likely for dynamic shapes)
  if (unlikely(map_it == pMap->end())) {
916
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
917 918 919 920 921
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
922
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
923
  if (unlikely(sBlob_it == sBlob->end())) {
924
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
925 926 927 928
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
929 930

  // Find Blob via name
931
  auto key_it = pBlob->find(name);
932

933
  if (unlikely(key_it == pBlob->end())) {
934
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
935 936
    return nullptr;
  }
937

938
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
939 940
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
941 942
}

943 944 945
#endif

#ifdef PADDLE_WITH_CUSTOM_DEVICE
946 947 948
CustomDeviceContext::CustomDeviceContext(CustomPlace place)
    : phi::CustomContext(place) {
  Init();
949
  stream_.reset(new phi::stream::Stream(place, stream()));
950 951 952
}

CustomDeviceContext::~CustomDeviceContext() {}
T
tensor-tang 已提交
953
#endif
Q
qijun 已提交
954
}  // namespace platform
Q
qijun 已提交
955
}  // namespace paddle