backward.py 86.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
19
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
20
from . import core
F
update  
fengjiayi 已提交
21
import collections
22
import copy
23
import six
24
import logging
M
minqiyang 已提交
25
from .. import compat as cpt
26
from . import unique_name
27
from . import log_helper
L
liym27 已提交
28
import paddle.fluid
29
from .data_feeder import check_type
M
mapingshuo 已提交
30 31 32 33 34
__all__ = [
    'append_backward',
    'gradients',
]

35 36 37
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
38 39 40 41 42 43 44 45 46 47 48

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
49
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
50
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
51 52 53 54 55 56 57 58 59 60 61
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
62
            if op.desc.type() == "seed":
M
mapingshuo 已提交
63 64 65 66 67 68 69 70 71 72 73
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
74 75 76 77 78
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
103

M
mapingshuo 已提交
104 105
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
119
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
120 121 122 123 124 125 126 127 128
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

155 156 157 158
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
159
                _logger.info(
160 161 162 163 164 165 166 167 168 169 170
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
171 172 173 174 175 176
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
177
        while op_idx < len(self.ops):
M
mapingshuo 已提交
178 179 180 181
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
182 183 184 185
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
186 187 188 189 190 191 192 193 194 195 196
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
197 198 199 200 201 202 203

            op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

204 205
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory, 
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
M
mapingshuo 已提交
206 207 208 209 210
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
211 212 213 214 215
                attrs={
                    'seed': seed,
                    'op_device': op_device,
                    'force_cpu': True
                })
M
mapingshuo 已提交
216 217 218 219 220 221 222 223
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
237
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
254 255
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
275 276
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
290 291


292 293
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
294
    Traverse all ops in op_descs[begin_idx : end_idx],
295 296
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
297 298 299
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
300
        end_idx = len(op_descs)
301 302 303 304 305 306 307 308 309 310 311 312 313
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
314 315


F
fengjiayi 已提交
316
def _create_op_desc_(op_type, inputs, outputs, attrs):
317 318 319
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
320 321
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
322
    for para, args in six.iteritems(inputs):
323 324 325 326 327
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
328
    for para, args in six.iteritems(outputs):
329 330 331 332 333
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
334 335

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
336
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
337 338 339 340

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
341 342
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
343
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
344 345 346
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
347
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
348 349 350
    return op_desc


M
mapingshuo 已提交
351 352 353 354 355 356 357 358 359 360
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
361 362
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
363 364 365 366
        })
    return op_desc


367
def _infer_var_data_type_shape_(grad_var_name, block):
368
    """
369
    Infer the data type and shape of given grad variable
370
    """
M
minqiyang 已提交
371 372 373 374
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
375
        grad_var.set_dtype(fwd_var.dtype())
376
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
377
    else:
378
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
379 380


F
fengjiayi 已提交
381
def _all_in_set_(cands, s):
382 383 384
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
385 386
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
387 388 389 390 391 392
    for c in cands:
        if not c in s:
            return False
    return True


393 394 395 396 397 398
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
399 400
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
401 402
    for c in literal_cands:
        if c in literal_set:
403 404 405 406
            return True
    return False


F
fengjiayi 已提交
407
def _strip_grad_suffix_(name):
408
    """
M
mapingshuo 已提交
409
    Strip the grad suffix from the given variable name
410 411 412
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
413
    name = cpt.to_text(name)
M
minqiyang 已提交
414
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
415
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
416 417 418


def _append_grad_suffix_(name):
419 420 421 422
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
423
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
424 425


T
tangwei12 已提交
426 427 428 429 430
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
431 432 433 434 435 436
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
437 438 439 440
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
441 442 443
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
444 445 446 447 448
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
465 466
                             {"use_mkldnn": False,
                              "op_device": op_device}))
467 468 469
    renamed_vars[var_name] = [var_name]


470
def _addup_repetitive_outputs_(op_descs, block_idx):
471 472
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
473 474
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
475 476
    `sum_op`s are added to implement the accumulate.
    """
477
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
478 479
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
480
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
481
    renamed_vars = collections.defaultdict(list)
482
    renamed_var_start_idx = collections.defaultdict(list)
483
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
484
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
485 486 487 488 489
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
490
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
491 492
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
493
            if len(renamed_vars[var_name]) > 1:
494
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
495 496 497
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
498
                else:
W
WangXi 已提交
499 500 501
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
502

F
update  
fengjiayi 已提交
503
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
504 505
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
506 507
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
508
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
509
                #    continue
F
fengjiayi 已提交
510 511 512 513 514 515 516
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
517
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
518 519
                else:
                    if len(renamed_vars[var_name]) == 1:
520
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
521 522 523 524
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
525 526 527 528 529 530
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
531 532
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

546
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
547
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
548
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
549 550 551
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
552
                    # record the latest device
553
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
554

M
minqiyang 已提交
555
    for var_name, inputs in six.iteritems(renamed_vars):
556 557
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
558 559 560
                _accumulate_gradients_by_sum_op_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
561
            else:
562 563 564
                _accumulate_gradients_by_add_ops_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
565

F
fengjiayi 已提交
566
    # sum_op descs are sorted according to their insert position
567 568 569 570 571 572 573 574 575 576
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
577 578 579 580 581

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
582 583 584 585
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
586
        2. all grad inputs of the grad op are in 'no_grad_set'
587
    """
F
fengjiayi 已提交
588 589

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
590 591
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
592
            return True
593 594 595 596
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
597
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
598 599 600
            return True
        return False

F
fengjiayi 已提交
601
    # Remove ops whose outputs are all in no_grad_dict
602 603 604 605
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
606 607
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
608
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
609
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
610
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
611
            if core.grad_var_suffix() in arg and arg in no_grad_set:
612
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
613 614
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
615 616
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
617

618
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
619 620 621 622

    return op_descs


C
chengduo 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
638
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
738 739 740
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
741
    # not_need_op_descs will be whole graph, this IF clause avoids it.
742 743 744
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
745 746


Y
Yang Yang 已提交
747 748
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
749
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
750 751 752
    return proto.__str__()


M
mapingshuo 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
768
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
769 770 771 772 773
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
774 775 776
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
777 778
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
779 780
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
781 782
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
783
    """
M
mapingshuo 已提交
784 785

    checkpoints_name = [x.name for x in checkpoints]
786
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
787 788
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
789
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
790
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
791
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
792
    program_stat.build_stats()
M
mapingshuo 已提交
793 794

    # 1) find ops between checkpoints, i.e. recompute_segments
795
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
796 797
    segments = []

798
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
799 800 801 802 803 804 805
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
806
            # only count the last generate op
M
mapingshuo 已提交
807 808 809 810 811 812
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
813
        pre_segment_end_idx = -1
M
mapingshuo 已提交
814 815 816
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
817 818
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
819 820 821 822
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
823 824 825
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
826
                segments.append([min_idx, max_idx + 1])
827 828 829
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
830

M
mapingshuo 已提交
831 832 833 834 835 836
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
837

J
JZ-LIANG 已提交
838
    for i, (idx1, idx2) in enumerate(recompute_segments):
839 840
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
841
        ), ops[idx1].desc.input_arg_names()))
842
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
843
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
844 845
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
846
        ), ops[idx1].desc.input_arg_names()))
847
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
848 849
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
850
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
851
    vars_should_be_hold = []
852
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
853 854 855
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
856 857

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
858
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
859 860
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
861
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
862
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
863
    # c. input variables are checkpoints
M
mapingshuo 已提交
864 865 866
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
867
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
868 869 870 871 872 873
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
874
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
875 876 877 878 879 880 881 882 883
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
884 885 886 887 888
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
903 904 905 906 907
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
930 931 932 933 934 935 936 937 938 939 940

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
941
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
942 943 944 945
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
946
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
947 948 949 950 951 952
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

J
JZ-LIANG 已提交
953
        # 3.c. add backward ops for all ops in current segment 
M
mapingshuo 已提交
954 955 956
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
957 958 959 960 961 962 963

            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
964 965 966 967 968
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
969
    # 3.d. add sum op for repetitive_outputs
970
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
971
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
972 973 974 975 976 977
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


978 979 980 981 982
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
983 984
    """
    Get output vars in subblock which will be assigned to parent block.
985 986 987 988 989 990 991 992 993 994 995 996
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
997
    """
998

999 1000 1001
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1014
            for op_desc in sub_block.ops:
1015
                if var in op_desc.output_arg_names:
1016
                    for name in op_desc.input_arg_names:
1017
                        sub_outputs.append(sub_block._var_recursive(name))
1018

1019 1020
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1021
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
1022
                                           no_grad_set, op_path_dict, is_while)
1023 1024 1025 1026
        return sub_block_op_path
    return sub_block.ops


1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1040 1041
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1042 1043 1044
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1045
                          callbacks=None,
1046 1047
                          input_grad_names_set=None,
                          op_path_dict=None):
1048 1049 1050 1051 1052
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1053
        ops(Op): the forward operators whose backward ops need to be added
1054
        target_block(Block): the block which is going to hold new generated grad ops
1055
        no_grad_dict(dict):
1056
            key(int)  block index
T
tianshuo78520a 已提交
1057
            val(set) a set of variable names. These variables have no gradient
1058 1059 1060
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1061 1062 1063 1064
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1065 1066 1067
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1068
    """
Y
Yang Yang 已提交
1069
    if callbacks is not None:
1070
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1071 1072 1073
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1074

F
fengjiayi 已提交
1075
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1076 1077
    grad_op_descs = []
    program = block.program
1078

1079 1080
    rename_var_map = {}

1081
    # add grad_op_desc by reversed ops
1082
    for op in reversed(ops):
F
fengjiayi 已提交
1083 1084 1085
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1086
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1087
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1088
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1089 1090 1091
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1092
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1093
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1094
                                  no_grad_dict, grad_to_var, callbacks,
1095
                                  input_grad_names_set, op_path_dict)
1096
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1097

W
Wu Yi 已提交
1098
            program._rollback()
F
fengjiayi 已提交
1099 1100
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1101
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1102
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1103
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
1104

1105 1106
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1107 1108 1109 1110
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1166

M
mapingshuo 已提交
1167
    # sum parameter's gradients' var given multiple var gradient
1168
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1169

M
mapingshuo 已提交
1170 1171
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1172 1173
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1174

M
mapingshuo 已提交
1175
    # remove some backward ops
C
chengduo 已提交
1176
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1177

C
chengduo 已提交
1178 1179 1180
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1181

F
fengjiayi 已提交
1182
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1183 1184
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1185
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1186 1187
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1188
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1189
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1190
        if callbacks is not None:
1191
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1192 1193
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1194

F
fengjiayi 已提交
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1216
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1217 1218 1219 1220
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1221
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1234
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1235
    """
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1253 1254 1255
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1256
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1257
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1275
        # If the outputs of grad op is empty, just remove it
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1301
                        continue
1302

F
fengjiayi 已提交
1303 1304 1305
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1306 1307
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1308
                continue
M
minqiyang 已提交
1309
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1310
            new_vars.add(grad_var_name)
1311
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1312 1313 1314 1315 1316
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1317

F
fengjiayi 已提交
1318 1319
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1320
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1321

1322 1323 1324
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1325

1326 1327 1328 1329 1330 1331
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1332
                op_desc._rename_input(name, var_map[name])
1333 1334

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1335 1336
            if "@GRAD" not in name:
                continue
1337
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1338
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1339
                op_desc._rename_output(name, new_name)
1340 1341
                var_map[name] = new_name

M
minqiyang 已提交
1342
    for g, ng in six.iteritems(var_map):
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1354
        for var in list(block.vars.values()):
1355 1356 1357 1358 1359 1360 1361
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1393
@framework.static_only
M
mapingshuo 已提交
1394 1395 1396 1397 1398
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1399
    """
1400 1401
    :api_attr: Static Graph

1402
    This function appends backward part to main_program.
F
fengjiayi 已提交
1403

1404 1405
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1406 1407
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1408

1409 1410
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1411

1412
    Parameters:
1413
        loss(Tensor): The loss Tensor of the network.
1414
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1415
                                           that need to be updated by optimizers.
1416
                                           If it is None, all parameters
F
fengjiayi 已提交
1417
                                           will be updated.
1418
                                           Default: None.
1419 1420
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1421
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1422
                               be automatically added into this set.
1423
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1424
                               Default: None.
1425
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1426
                                               The callbacks are used for
1427 1428 1429 1430 1431 1432
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1433
                                               object must have two input
1434 1435
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1436
                                               the new gradient operator will
1437
                                               be added to. The ``context`` is a
1438
                                               map, whose keys are gradient
1439 1440 1441
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1442
                                               has another special key-value pair:
1443
                                               the key is string ``__current_op_desc__``
1444 1445 1446
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1447
                                               Default: None.
F
fengjiayi 已提交
1448 1449

    Returns:
1450 1451
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1452 1453

    Raises:
1454
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1455 1456 1457 1458

    Examples:
        .. code-block:: python

1459 1460
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1461

1462 1463 1464 1465 1466
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1467
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1468 1469
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1470 1471

            # Get all weights in main_program, not include bias.
1472
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1473 1474 1475
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1476
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1477 1478
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1479 1480
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1481 1482 1483
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1484
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1485 1486
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1487 1488
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1489 1490
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1491 1492
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1493 1494 1495
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1496
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1497

1498
    """
1499
    check_type(loss, 'loss', framework.Variable,
1500
               'paddle.static.append_backward')
Y
yuyang18 已提交
1501

Y
Fix bug  
yuyang18 已提交
1502 1503
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1504
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1505

W
Wu Yi 已提交
1506 1507 1508
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1509

Y
Yang Yang 已提交
1510
    if callbacks is not None:
1511
        check_type(callbacks, 'callbacks', (list, tuple),
1512
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1513

F
fengjiayi 已提交
1514
    program = loss.block.program
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1525

F
fengjiayi 已提交
1526
    if no_grad_set is None:
1527
        no_grad_set = set()
1528 1529
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1530
    no_grad_dict = _get_stop_gradients_(program)
1531 1532
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1533
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1554

F
fengjiayi 已提交
1555 1556
    grad_to_var = dict()

M
mapingshuo 已提交
1557
    op_desc = _create_loss_op_desc_(loss)
1558 1559 1560 1561 1562 1563 1564
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1565 1566 1567 1568

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1581
        # TODO(liym27): need a better design.
1582 1583 1584 1585 1586
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1587
        # TODO: support _append_backward_ops_with_checkpoints_ in
1588
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1589
        is_recompute = False
1590 1591 1592
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1593
            is_recompute = True
1594
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1595 1596
                vars_should_be_hold, \
                recompute_segments = \
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1612 1613
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1614 1615 1616 1617 1618 1619 1620 1621 1622

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1623 1624
    # we need rename the internal gradient variables so that they have
    # different names.
1625
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1626

1627 1628
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1629

F
fengjiayi 已提交
1630
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1631
    program._sync_with_cpp()
F
fengjiayi 已提交
1632

1633
    if parameter_list is not None:
1634 1635
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1636 1637
        parameters = []
        for i, param in enumerate(parameter_list):
1638 1639 1640
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1641 1642 1643 1644
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1645
    else:
F
fengjiayi 已提交
1646
        params = program.global_block().all_parameters()
C
chengduo 已提交
1647
        parameters = [param.name for param in params if param.trainable]
1648

1649
    params_and_grads = []
1650
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1651
    for param in parameters:
M
minqiyang 已提交
1652
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1653
            continue
F
update  
fengjiayi 已提交
1654
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1655
        grad_block = grad_info[1]
1656 1657 1658 1659
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1660
        param_var = program.global_block().var(param)
1661
        grad_var = grad_block.var(grad_info[0])
1662 1663 1664 1665 1666
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1667
        else:
1668
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1669 1670 1671 1672

    for p, g in params_and_grads:
        if g is None:
            continue
1673 1674 1675
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1676 1677 1678 1679 1680 1681 1682
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1683
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1684 1685
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1686
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1687

J
JZ-LIANG 已提交
1688 1689 1690 1691
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1692 1693 1694 1695 1696 1697 1698 1699


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1726 1727 1728 1729 1730 1731
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1751 1752 1753
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1754
    those vars belong to no_grad_var.
1755
    """
1756
    output_names = _get_output_names(block, targets)
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1771 1772 1773 1774 1775 1776
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1777
    """
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1791
    """
1792

1793
    input_names = set([inp.name for inp in inputs])
1794 1795 1796
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1797 1798 1799 1800 1801 1802

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1803 1804 1805
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1806 1807 1808 1809 1810 1811 1812
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1813 1814 1815 1816 1817 1818 1819 1820 1821
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1822 1823 1824
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1825 1826 1827 1828 1829 1830
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1831 1832 1833 1834 1835
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1836
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1837 1838
                relevant_op_flags[i] = True

1839 1840 1841 1842 1843 1844 1845
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1846
                if name not in input_names and block.vars[name].stop_gradient:
1847 1848 1849 1850 1851 1852 1853
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1854
    Backpropagate the gradients of targets to inputs.
1855 1856

    Args:
1857 1858 1859
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
1860 1861
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1862 1863
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1864 1865
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1866
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1867
                               Default: None.
1868 1869

    Return:
1870 1871
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1872 1873 1874 1875 1876 1877 1878 1879
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1880 1881
    # increase appending gradients times
    prog._appending_grad_times += 1
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1893 1894
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1895
    no_grad_dict = _get_stop_gradients_(prog)
1896
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1897 1898 1899

    fwd_op_num = block.desc.op_size()

1900 1901
    input_grad_names_set = set()

1902 1903 1904 1905 1906
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1907 1908 1909 1910 1911
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1912
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1913
                                       {"ShapeTensor": [target_shape]},
1914
                                       {"Out": [grad_name]}, {
1915
                                           "shape": target.shape,
1916 1917 1918
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1919

1920
            block.desc.append_op().copy_from(op_desc)
1921
            input_grad_names_set.add(grad_name)
1922 1923 1924 1925 1926 1927 1928 1929
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1930 1931 1932 1933 1934 1935
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1936 1937 1938 1939 1940 1941

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1942 1943 1944 1945

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1946 1947 1948 1949 1950 1951

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1952
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1953 1954
    grad_to_var = dict()
    grad_info_map = dict()
1955 1956 1957 1958 1959 1960
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1961 1962
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1963 1964 1965 1966 1967 1968 1969

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1970
    prog._sync_with_cpp()
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1986 1987


1988
@framework.static_only
1989 1990
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1991
    :api_attr: Static Graph
T
tangwei12 已提交
1992

1993 1994 1995
    Backpropagate the gradients of targets to inputs.

    Args:
1996 1997 1998
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
1999 2000
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2001 2002 2003
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2004
            in this set will be added to the default set. Default: None.
2005 2006

    Return:
2007 2008
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2009 2010 2011 2012 2013
        will be None.

    Examples:
        .. code-block:: python

2014 2015 2016 2017
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2018

2019
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2020
            x.stop_gradient=False
2021 2022 2023 2024
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
2025
    """
2026
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2027
               'paddle.static.gradients')
2028
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2029
               'paddle.static.gradients')
2030
    check_type(target_gradients, 'target_gradients', (
2031
        framework.Variable, list, tuple, type(None)), 'paddle.static.gradients')
2032

2033 2034
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
    check_type(program, 'program', paddle.fluid.Program,
               'paddle.static.gradients_with_optimizer')
    check_type(optimizer, 'optimizer', paddle.optimizer.Optimizer,
               'paddle.static.gradients_with_optimizer')

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
        pram_grads = [(pram, grad) for pram, grad in zip(inputs, grads)
                      if isinstance(pram, paddle.fluid.framework.Parameter) and
                      grad is not None]

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads