operator.h 13.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19 20 21 22
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
23
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
24
#include "paddle/framework/attribute.h"
Q
qiaolongfei 已提交
25
#include "paddle/framework/block_desc.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/framework.pb.h"
27
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
28
#include "paddle/framework/op_info.h"
Q
QI JUN 已提交
29
#include "paddle/framework/op_kernel_type.h"
Q
qijun 已提交
30
#include "paddle/framework/scope.h"
Q
QI JUN 已提交
31
#include "paddle/framework/selected_rows.h"
Q
qijun 已提交
32 33
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
Y
Yu Yang 已提交
34
#include "paddle/platform/variant.h"
Q
qijun 已提交
35
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54

Q
Qiao Longfei 已提交
55 56 57 58 59
// define some kernel hint
const std::string kUseCPU = "use_cpu";
const std::string kUseCUDNN = "use_cudnn";
const std::string kUseMKLDNN = "use_mkldnn";

60 61 62 63
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
64
class OperatorBase;
65
class ExecutionContext;
66

Q
Qiao Longfei 已提交
67 68 69 70 71 72 73 74
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
75 76
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
77

Q
Qiao Longfei 已提交
78 79 80
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
81
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
82 83 84 85 86
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

87
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
88 89

  /// Net will call this function to Run an op.
D
dzhwinter 已提交
90
  virtual void Run(const Scope& scope, const platform::Place& place) const = 0;
Y
Yu Yang 已提交
91

T
typhoonzero 已提交
92 93 94
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

Y
Yu Yang 已提交
95 96
  virtual bool IsNetOp() const { return false; }

97 98
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
99 100 101
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
102 103
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
104

Y
Yu Yang 已提交
105
  //! Get a input with argument's name described in `op_proto`
106
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
107
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
108
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
109

Q
qijun 已提交
110 111
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
112
  //! Get a output with argument's name described in `op_proto`
113
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
114 115
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
116
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
117

Y
Yu Yang 已提交
118
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
119

Q
qiaolongfei 已提交
120
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
121
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
122 123
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
124
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
125 126
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
127

Q
qiaolongfei 已提交
128
 protected:
Q
Qiao Longfei 已提交
129
  std::string type_;
D
dongzhihong 已提交
130
  // NOTE: in case of OpGrad, inputs_ contains:
131
  // I (Inputs)
D
dongzhihong 已提交
132 133
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
134
  VariableNameMap inputs_;
Y
Yu Yang 已提交
135

D
dongzhihong 已提交
136 137
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
138
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
139
  AttributeMap attrs_;
140 141 142 143

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
144 145
};

Y
Yu Yang 已提交
146 147
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
148
// register it. i.e. `Clone` method is not needed to define by yourself.
149 150 151
#define DEFINE_OP_CLONE_METHOD(cls)                                            \
  std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final {     \
    return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
152
  }
Y
Yu Yang 已提交
153

Y
Yu Yang 已提交
154 155 156 157
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
158 159
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
160 161 162
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
163
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
164

165 166
class NOP : public OperatorBase {
 public:
167
  using OperatorBase::OperatorBase;
D
dzhwinter 已提交
168
  void Run(const Scope& scope, const platform::Place& place) const override {}
169 170 171
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
172 173
};

174
class ExecutionContext {
Y
Yan Chunwei 已提交
175
 public:
176 177 178
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
179

Q
qiaolongfei 已提交
180 181 182 183
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
184
  template <typename T>
Y
Yu Yang 已提交
185 186
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
187 188
  }

Y
Yu Yang 已提交
189
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
190
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
191 192
  }

Y
Yu Yang 已提交
193
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
194
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
195 196
  }

197
  const Variable* InputVar(const std::string& name) const {
198
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
199
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
200 201
  }

202
  Variable* OutputVar(const std::string& name) const {
203
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
204
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
205 206
  }

207 208
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
209 210
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
211
    res.reserve(names.size());
212 213
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
214 215
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
216
                   });
Y
Yan Chunwei 已提交
217 218 219
    return res;
  }

220
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
221
    auto names = op_.Outputs(name);
222
    std::vector<Variable*> res;
223
    res.reserve(names.size());
224 225
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
226 227
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
228
                   });
Y
Yan Chunwei 已提交
229 230 231
    return res;
  }

232 233
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
234
    auto* var = InputVar(name);
235
    return var == nullptr ? nullptr : &var->Get<T>();
236 237 238 239
  }

  template <typename T>
  T* Output(const std::string& name) const {
240
    auto var = OutputVar(name);
241
    return var == nullptr ? nullptr : var->GetMutable<T>();
242 243 244 245 246 247 248 249
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
250
                   [&](const std::string& sub_name) {
251
                     auto var = scope_.FindVar(sub_name);
252
                     return var == nullptr ? nullptr : &var->Get<T>();
253 254 255 256 257
                   });
    return res;
  }

  template <typename T>
258
  std::vector<T*> MultiOutput(const std::string& name) const {
259
    auto names = op_.Outputs(name);
260
    std::vector<T*> res;
261 262
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
263
                   [&](const std::string& sub_name) {
264
                     auto var = scope_.FindVar(sub_name);
265
                     return var == nullptr ? nullptr : var->GetMutable<T>();
266 267 268 269
                   });
    return res;
  }

270 271 272 273 274 275
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
276
    if (!in_var->IsType<LoDTensor>()) return;
277
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
278
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
279 280 281
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
282 283
  }

284
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
285

Q
QI JUN 已提交
286 287 288 289 290
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

291
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
292
    return device_context_;
Q
qijun 已提交
293
  }
Q
qijun 已提交
294

Q
QI JUN 已提交
295 296 297 298 299 300 301 302
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
303
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
304 305 306
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
307

D
dzhwinter 已提交
308
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
309 310 311 312
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

313
 private:
314 315
  const OperatorBase& op_;
  const Scope& scope_;
316
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
317 318
};

319 320 321 322 323 324 325 326 327 328 329 330 331 332
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
333
class OpKernelBase {
Q
qijun 已提交
334
 public:
Q
qijun 已提交
335
  /**
336
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
337 338
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
339
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
340 341
   */

342
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
343

Y
Yu Yang 已提交
344 345 346 347 348 349 350
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
351 352
};

Y
Yu Yang 已提交
353 354
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
355
  using OpKernelMap =
Y
Yu Yang 已提交
356 357
      std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
                         OpKernelType::Hash>;
Q
Qiao Longfei 已提交
358

Y
Yu Yang 已提交
359 360
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
361 362
      : OperatorBase(type, inputs, outputs, attrs) {}

D
dzhwinter 已提交
363
  void Run(const Scope& scope, const platform::Place& place) const final;
Q
Qiao Longfei 已提交
364

Y
Yu Yang 已提交
365 366 367 368
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
369
  }
Y
Yan Chunwei 已提交
370

371
  bool SupportGPU() const override {
Y
Yu Yang 已提交
372 373 374 375 376
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
377 378
  }

379 380 381
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
382

Q
qiaolongfei 已提交
383
 protected:
Q
Qiao Longfei 已提交
384 385 386
  virtual OpKernelType GetActualKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetExpectedKernelType(
      const OpKernelType& actual_kernel_type) const;
Y
Yu Yang 已提交
387 388

 private:
Y
Yu Yang 已提交
389 390
  // indicate kernel DataType by input data. Defaultly all input data must be
  // same.
391
  proto::DataType IndicateDataType(const ExecutionContext& ctx) const;
Q
Qiao Longfei 已提交
392 393
};

Y
Yu Yang 已提交
394 395
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
396 397
}  // namespace framework
}  // namespace paddle