operator.h 14.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
22
#include "op_info.h"
Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
25 26 27 28
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
29
#include "paddle/platform/variant.h"
Q
qijun 已提交
30
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
31 32 33 34

namespace paddle {
namespace framework {

35
/// If a variable is a empty variable, that name will be used.
36
constexpr char kEmptyVarName[] = "@EMPTY@";
37 38 39

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
40
constexpr char kTempVarName[] = "@TEMP@";
41 42 43 44

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
45
constexpr char kGradVarSuffix[] = "@GRAD";
46 47

/// Variables with this suffix are supposed to be filled up with zeros.
48
constexpr char kZeroVarSuffix[] = "@ZERO";
49 50 51 52 53

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
54
class OperatorBase;
55 56
class InferShapeContext;
class ExecutionContext;
57

Q
Qiao Longfei 已提交
58 59 60 61 62 63 64 65
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
66 67
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
68

Q
Qiao Longfei 已提交
69 70 71 72 73 74 75 76 77
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

78
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
79 80 81

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
82
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
83 84

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
85
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
86 87
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
88 89
  virtual bool IsNetOp() const { return false; }

90 91
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
92 93 94
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
95 96
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

  const std::vector<std::string> InputsNames() const {
    std::vector<std::string> result;
    for (auto& kv : inputs_) {
      for (auto& name : kv.second) {
        result.push_back(name);
      }
    }
    return result;
  }

  const std::vector<std::string> OutputsNames() const {
    std::vector<std::string> result;
    for (auto& kv : outputs_) {
      for (auto& name : kv.second) {
        result.push_back(name);
      }
    }
    return result;
  }

Y
Yu Yang 已提交
118
  //! Get a input with argument's name described in `op_proto`
119
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
120
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
121
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
122

Y
Yu Yang 已提交
123
  //! Get a output with argument's name described in `op_proto`
124
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
125 126
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
127
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
128

Y
Yu Yang 已提交
129
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
130

Q
qiaolongfei 已提交
131
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
132
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
133 134
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
135
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
136 137
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
138

Q
qiaolongfei 已提交
139
 protected:
Q
Qiao Longfei 已提交
140
  std::string type_;
D
dongzhihong 已提交
141
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
142
  // I (Inputs)opear
D
dongzhihong 已提交
143 144
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
145
  VariableNameMap inputs_;
Y
Yu Yang 已提交
146

D
dongzhihong 已提交
147 148
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
149
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
150
  AttributeMap attrs_;
151 152 153 154

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
155 156
};

Y
Yu Yang 已提交
157 158
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
159
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
160
#define DEFINE_OP_CLONE_METHOD(cls)                       \
Y
Yu Yang 已提交
161
  std::unique_ptr<OperatorBase> Clone() const final {     \
Y
Yu Yang 已提交
162
    return std::unique_ptr<OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
163
  }
Y
Yu Yang 已提交
164

Y
Yu Yang 已提交
165 166 167 168
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
169 170
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
171 172 173
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
174
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
175

176 177
class NOP : public OperatorBase {
 public:
178
  using OperatorBase::OperatorBase;
179 180 181
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
182 183 184
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
185 186
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate();

 protected:
  struct VariableBuilder {
    OpProto::Var* var_;

    VariableBuilder& AsDuplicable() {
      var_->set_duplicable(true);
      return *this;
    }

    VariableBuilder& AsIntermediate() {
      var_->set_intermediate(true);
      return *this;
    }

213 214
    VariableBuilder& NotInGradient() {
      var_->set_not_in_gradient(true);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      return *this;
    }
  };

  VariableBuilder AddInput(const std::string& name, const std::string& comment);

  VariableBuilder AddOutput(const std::string& name,
                            const std::string& comment);

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
                               const std::string& comment,
                               bool generated = false) {
    auto* attr = proto_->add_attrs();
    attr->set_name(name);
    attr->set_comment(comment);
    attr->set_generated(generated);
    attr->set_type(AttrTypeID<T>());
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) { proto_->set_comment(comment); }

 private:
  void CheckNoDuplicatedInOutAttrs();

  OpProto* proto_;
  OpAttrChecker* op_checker_;
  bool validated_{false};
};

class NOPMaker : public OpProtoAndCheckerMaker {
 public:
  NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {}
};

252
class InferShapeContext {
Y
Yan Chunwei 已提交
253
 public:
254 255
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
256

Q
qiaolongfei 已提交
257 258 259 260
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
261 262 263 264 265
  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    return op_.GetAttr<T>(name);
  }

Y
Yu Yang 已提交
266
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
267
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
268 269
  }

Y
Yu Yang 已提交
270
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
271
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
272 273
  }

274
  const Variable* InputVar(const std::string& name) const {
275
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
276
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
277 278
  }

279
  Variable* OutputVar(const std::string& name) const {
280
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
281
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
282 283
  }

284 285
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
286 287
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
288
    res.reserve(names.size());
289 290
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
291 292
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
293
                   });
Y
Yan Chunwei 已提交
294 295 296
    return res;
  }

297
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
298 299
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
300
    res.reserve(names.size());
301 302
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
303 304
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
305
                   });
Y
Yan Chunwei 已提交
306 307 308
    return res;
  }

309 310
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
311
    auto* var = InputVar(name);
312
    return var == nullptr ? nullptr : &var->Get<T>();
313 314 315 316
  }

  template <typename T>
  T* Output(const std::string& name) const {
317
    auto var = OutputVar(name);
318
    return var == nullptr ? nullptr : var->GetMutable<T>();
319 320 321 322 323 324 325 326
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
327
                   [&](const std::string& sub_name) {
328
                     auto var = scope_.FindVar(sub_name);
329
                     return var == nullptr ? nullptr : &var->Get<T>();
330 331 332 333 334
                   });
    return res;
  }

  template <typename T>
335
  std::vector<T*> MultiOutput(const std::string& name) const {
336
    auto names = op_.Outputs(name);
337
    std::vector<T*> res;
338 339
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
340
                   [&](const std::string& sub_name) {
341
                     auto var = scope_.FindVar(sub_name);
342
                     return var == nullptr ? nullptr : var->GetMutable<T>();
343 344 345 346
                   });
    return res;
  }

Q
qiaolongfei 已提交
347
 private:
348
  const OperatorBase& op_;
349
  const Scope& scope_;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

367
class ExecutionContext : public InferShapeContext {
368
 public:
369
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
370
                   const platform::DeviceContext* device_context)
371
      : InferShapeContext(op, scope), device_context_(device_context) {}
372

Q
qijun 已提交
373 374 375
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
376
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
377

D
dongzhihong 已提交
378
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
379

Q
qijun 已提交
380
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
381
    return device_context_;
Q
qijun 已提交
382
  }
Q
qijun 已提交
383

D
dongzhihong 已提交
384
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
385 386
};

Q
qijun 已提交
387 388
class OpKernel {
 public:
Q
qijun 已提交
389
  /**
390
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
391 392
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
393
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
394 395
   */

396
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
397 398 399 400

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
401 402
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
403 404
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
405

Y
Yu Yang 已提交
406
    OpKernelKey() = default;
L
liaogang 已提交
407
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
408 409 410
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
411 412 413
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
414 415 416 417 418 419 420 421 422 423 424
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
425

Y
Yu Yang 已提交
426 427
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
428 429
      : OperatorBase(type, inputs, outputs, attrs) {}

430
  void InferShape(const Scope& scope) const override {
431
    InferShape(InferShapeContext(*this, scope));
432 433
  }

Y
Yu Yang 已提交
434
  void Run(const Scope& scope,
Y
Yu Yang 已提交
435
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
436
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
437
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
438 439
  }

Y
Yu Yang 已提交
440 441 442 443
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
444
  }
Y
Yan Chunwei 已提交
445

446 447 448 449 450 451
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
452
 protected:
453
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
454 455 456 457
};

}  // namespace framework
}  // namespace paddle