operator.h 9.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21 22
#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
25 26 27 28 29
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34 35 36 37 38 39 40 41 42 43 44 45 46
/// If a variable is a empty variable, that name will be used.
const std::string kEmptyVarName = "@EMPTY@";

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
const std::string kTempVarName = "@TEMP@";

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
const std::string kGradVarSuffix = "@GRAD";

/// Variables with this suffix are supposed to be filled up with zeros.
Y
Yi Wang 已提交
47
const std::string kZeroVarSuffix = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
53
class OperatorBase;
54 55
class InferShapeContext;
class ExecutionContext;
56

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

74
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
75

Q
Qiao Longfei 已提交
76 77 78 79
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
80 81
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
82
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
83 84

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
85
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
86 87
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
88 89
  virtual bool IsNetOp() const { return false; }

90 91
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
92 93 94
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
95
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
96
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
97

Y
Yu Yang 已提交
98
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
99
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
101
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
102 103
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
104
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
105

Q
Qiao Longfei 已提交
106
 public:
Q
Qiao Longfei 已提交
107
  std::string type_;
D
dongzhihong 已提交
108 109 110 111
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
112 113
  std::unordered_map<std::string, std::vector<std::string>> inputs_;

D
dongzhihong 已提交
114 115
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
116
  std::unordered_map<std::string, std::vector<std::string>> outputs_;
Q
Qiao Longfei 已提交
117
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
118 119
};

120
class InferShapeContext {
Y
Yan Chunwei 已提交
121
 public:
122 123
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
124

Y
Yu Yang 已提交
125 126
  size_t InputSize(const std::string& name) const {
    return op_.inputs_.at(name).size();
Y
Yan Chunwei 已提交
127 128
  }

Y
Yu Yang 已提交
129 130
  size_t OutputSize(const std::string& name) const {
    return op_.outputs_.at(name).size();
Y
Yan Chunwei 已提交
131 132
  }

133
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
134
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
135 136
  }

137
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
138
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
139 140
  }

141 142
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
143 144
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
145
    res.reserve(names.size());
Y
Yan Chunwei 已提交
146
    std::transform(
147
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
148
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
149 150 151
    return res;
  }

152
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
153 154
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
155
    res.reserve(names.size());
Y
Yan Chunwei 已提交
156
    std::transform(
157
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
158
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
159 160 161
    return res;
  }

162 163
  template <typename T>
  const T* Input(const std::string& name) const {
164
    auto var = InputVar(name);
Y
Yan Chunwei 已提交
165
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
166
    return &var->Get<T>();
167 168 169 170
  }

  template <typename T>
  T* Output(const std::string& name) const {
171
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
172
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
173
    return var->GetMutable<T>();
174 175 176 177 178 179 180 181
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
182
                   [&](const std::string& sub_name) {
183
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
184 185 186
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
187
                     return &var->Get<T>();
188 189 190 191 192 193 194 195 196 197
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
198
                   [&](const std::string& sub_name) {
199
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
200 201 202
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
203
                     return var->GetMutable<T>();
204 205 206 207 208
                   });
    return res;
  }

  const OperatorBase& op_;
209
  const Scope& scope_;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

227
class ExecutionContext : public InferShapeContext {
228
 public:
229
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
230
                   const platform::DeviceContext* device_context)
231
      : InferShapeContext(op, scope), device_context_(device_context) {}
232

Q
qijun 已提交
233 234 235
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
236
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
237

D
dongzhihong 已提交
238
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
239

D
dongzhihong 已提交
240
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
241 242
};

Q
qijun 已提交
243 244
class OpKernel {
 public:
Q
qijun 已提交
245
  /**
246
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
247 248
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
249
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
250 251
   */

252
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
253 254 255 256

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
257 258
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
259 260
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
261

Y
Yu Yang 已提交
262
    OpKernelKey() = default;
L
liaogang 已提交
263
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
264 265 266
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
267 268 269
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278 279 280
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
281

282
  void InferShape(const Scope& scope) const override {
283
    InferShape(InferShapeContext(*this, scope));
284 285
  }

Y
Yu Yang 已提交
286
  void Run(const Scope& scope,
Y
Yu Yang 已提交
287
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
288
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
289
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
290 291
  }

Y
Yu Yang 已提交
292 293 294 295
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
296
  }
Y
Yan Chunwei 已提交
297

298 299 300 301 302 303
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
304
 protected:
305
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
306 307 308 309
};

}  // namespace framework
}  // namespace paddle