operator.h 10.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

53 54
extern std::unordered_map<std::string, OpProto>& OpProtos();

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

76
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
77

Q
Qiao Longfei 已提交
78 79 80 81
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
82 83
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
84
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
85 86

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
87
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
88 89
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
90 91
  virtual bool IsNetOp() const { return false; }

92 93
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
94 95 96
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
97
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
98
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
99
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
100
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
101

Y
Yu Yang 已提交
102
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
103
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
104 105
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
106
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const {
    std::vector<std::string> ret_val;
    if (has_intermediate) {
      // push all outputs into ret_val
      for (auto& o : outputs_) {
        ret_val.reserve(ret_val.size() + o.second.size());
        ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
      }
      return ret_val;
    }
    auto it = OpProtos().find(type_);
    PADDLE_ENFORCE(
        it != OpProtos().end(),
        "Operator %s not registered, cannot figure out intermediate outputs",
        type_);

    // get all OpProto::Var for outputs
    for (auto& o : it->second.outputs()) {
      // ignore all intermediate output
      if (o.intermediate()) continue;
      auto out = outputs_.find(o.name());
      if (out != outputs_.end()) {
        ret_val.reserve(ret_val.size() + out->second.size());
        ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
      }
    }
    return ret_val;
  }

137
  std::string Type() const { return type_; }
Y
Yi Wang 已提交
138 139
  const AttributeMap& Attrs() const { return attrs_; }

Q
Qiao Longfei 已提交
140
 public:
Q
Qiao Longfei 已提交
141
  std::string type_;
D
dongzhihong 已提交
142 143 144 145
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
146
  std::map<std::string, std::vector<std::string>> inputs_;
Y
Yu Yang 已提交
147

D
dongzhihong 已提交
148 149
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
150
  std::map<std::string, std::vector<std::string>> outputs_;
Q
Qiao Longfei 已提交
151
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
152 153
};

154
class InferShapeContext {
Y
Yan Chunwei 已提交
155
 public:
156 157
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
158

Y
Yu Yang 已提交
159 160
  size_t InputSize(const std::string& name) const {
    return op_.inputs_.at(name).size();
Y
Yan Chunwei 已提交
161 162
  }

Y
Yu Yang 已提交
163 164
  size_t OutputSize(const std::string& name) const {
    return op_.outputs_.at(name).size();
Y
Yan Chunwei 已提交
165 166
  }

167
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
168
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
169 170
  }

171
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
172
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
173 174
  }

175 176
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
177 178
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
179
    res.reserve(names.size());
Y
Yan Chunwei 已提交
180
    std::transform(
181
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
182
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
183 184 185
    return res;
  }

186
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
187 188
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
189
    res.reserve(names.size());
Y
Yan Chunwei 已提交
190
    std::transform(
191
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
192
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
193 194 195
    return res;
  }

196 197
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
198
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
199
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
200
    return &var->Get<T>();
201 202 203 204
  }

  template <typename T>
  T* Output(const std::string& name) const {
205
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
206
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
207
    return var->GetMutable<T>();
208 209 210 211 212 213 214 215
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
216
                   [&](const std::string& sub_name) {
217
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
218 219 220
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
221
                     return &var->Get<T>();
222 223 224 225 226 227 228 229 230 231
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
232
                   [&](const std::string& sub_name) {
233
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
234 235 236
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
237
                     return var->GetMutable<T>();
238 239 240 241 242
                   });
    return res;
  }

  const OperatorBase& op_;
243
  const Scope& scope_;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

261
class ExecutionContext : public InferShapeContext {
262
 public:
263
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
264
                   const platform::DeviceContext* device_context)
265
      : InferShapeContext(op, scope), device_context_(device_context) {}
266

Q
qijun 已提交
267 268 269
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
270
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
271

D
dongzhihong 已提交
272
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
273

D
dongzhihong 已提交
274
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
275 276
};

Q
qijun 已提交
277 278
class OpKernel {
 public:
Q
qijun 已提交
279
  /**
280
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
281 282
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
283
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
284 285
   */

286
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
287 288 289 290

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
291 292
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
293 294
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
295

Y
Yu Yang 已提交
296
    OpKernelKey() = default;
L
liaogang 已提交
297
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
298 299 300
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
301 302 303
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311 312 313 314
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
315

316
  void InferShape(const Scope& scope) const override {
317
    InferShape(InferShapeContext(*this, scope));
318 319
  }

Y
Yu Yang 已提交
320
  void Run(const Scope& scope,
Y
Yu Yang 已提交
321
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
322
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
323
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
324 325
  }

Y
Yu Yang 已提交
326 327 328 329
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
330
  }
Y
Yan Chunwei 已提交
331

332 333 334 335 336 337
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
338
 protected:
339
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
340 341 342 343
};

}  // namespace framework
}  // namespace paddle