operator.h 12.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Q
qijun 已提交
23
#include "paddle/framework/op_desc.pb.h"
Y
Yan Chunwei 已提交
24
#include "paddle/framework/op_proto.pb.h"
Q
qijun 已提交
25 26 27 28
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
29
#include "paddle/platform/variant.h"
Q
qijun 已提交
30
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
31 32 33 34

namespace paddle {
namespace framework {

35
/// If a variable is a empty variable, that name will be used.
36
constexpr char kEmptyVarName[] = "@EMPTY@";
37 38 39

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
40
constexpr char kTempVarName[] = "@TEMP@";
41 42 43 44

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
45
constexpr char kGradVarSuffix[] = "@GRAD";
46 47

/// Variables with this suffix are supposed to be filled up with zeros.
48
constexpr char kZeroVarSuffix[] = "@ZERO";
49 50 51 52 53

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
54
class OperatorBase;
55 56
class InferShapeContext;
class ExecutionContext;
57

F
fengjiayi 已提交
58 59 60 61 62 63 64 65 66 67
#define DEFINE_OPERATOR_CTOR(Class, ParentClass)                         \
 public:                                                                 \
  Class() { /* TODO(yi): This constructor is to be removed. */           \
  }                                                                      \
  Class(const std::string& type, const std::vector<std::string>& inputs, \
        const std::vector<std::string>& outputs,                         \
        const ::paddle::framework::AttributeMap& attrs,                  \
        std::unordered_map<std::string, int>* in_out_idxs)               \
      : ParentClass(type, inputs, outputs, attrs, in_out_idxs) {}

Q
Qiao Longfei 已提交
68 69 70 71 72 73 74 75
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
76
  OperatorBase() {}  // TODO(yi): This constructor is to be removed.
77 78 79 80 81
  OperatorBase(const std::string& type, const std::vector<std::string>& inputs,
               const std::vector<std::string>& outputs,
               const AttributeMap& attrs,
               std::unordered_map<std::string, int>* in_out_idxs)
      : type_(type),
Y
Yi Wang 已提交
82 83
        inputs_(inputs),
        outputs_(outputs),
84 85 86
        attrs_(attrs),
        in_out_idxs_(in_out_idxs) {}

Q
Qiao Longfei 已提交
87 88 89 90 91 92 93 94 95
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

96
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
97

Q
Qiao Longfei 已提交
98 99 100 101
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
102 103
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
104
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
105 106

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
107
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
108 109
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
110 111
  virtual bool IsNetOp() const { return false; }

112 113
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
114 115 116
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
117
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
118
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
119 120
  //! Get a input which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yan Chunwei 已提交
121
  std::vector<std::string> Inputs(const std::string& name) const;
Y
Yi Wang 已提交
122

Y
Yu Yang 已提交
123
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
124
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
125 126
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yan Chunwei 已提交
127 128
  std::vector<std::string> Outputs(const std::string& name) const;

Y
Yi Wang 已提交
129 130 131 132
  const std::string Type() const { return type_; }
  const std::vector<std::string> Inputs() const { return inputs_; }
  const std::vector<std::string> Outputs() const { return outputs_; }
  const AttributeMap& Attrs() const { return attrs_; }
133 134 135
  const std::unordered_map<std::string, int>* InOutIdx() const {
    return in_out_idxs_.get();
  }
Y
Yi Wang 已提交
136

Q
Qiao Longfei 已提交
137
 public:
Q
Qiao Longfei 已提交
138
  std::string type_;
D
dongzhihong 已提交
139 140 141 142
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Q
Qiao Longfei 已提交
143
  std::vector<std::string> inputs_;
D
dongzhihong 已提交
144 145
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Q
Qiao Longfei 已提交
146 147
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
148
  // store the arguments' offset described in op_desc.
Y
Yu Yang 已提交
149
  std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
Y
Yan Chunwei 已提交
150 151
};

152 153
class NOP : public OperatorBase {
 public:
154 155
  DEFINE_OPERATOR_CTOR(NOP, OperatorBase)

156 157 158 159 160
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
};

161
class InferShapeContext {
Y
Yan Chunwei 已提交
162
 public:
163 164
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
165 166

  size_t InputSize() const { return op_.inputs_.size(); }
Y
Yan Chunwei 已提交
167

168 169
  size_t OutputSize() const { return op_.outputs_.size(); }

170
  const Variable* InputVar(const size_t index) const {
171
    return scope_.FindVar(op_.inputs_.at(index));
Y
Yan Chunwei 已提交
172 173
  }

174
  Variable* OutputVar(const size_t index) const {
175
    return scope_.FindVar(op_.outputs_.at(index));
Y
Yan Chunwei 已提交
176 177
  }

178
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
179
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
180 181
  }

182
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
183
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
184 185
  }

186 187
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
188 189
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
190
    res.reserve(names.size());
Y
Yan Chunwei 已提交
191
    std::transform(
192
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
193
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
194 195 196
    return res;
  }

197
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
198 199
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
200
    res.reserve(names.size());
Y
Yan Chunwei 已提交
201
    std::transform(
202
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
203
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
204 205 206
    return res;
  }

207
  template <typename T>
208 209
  const T* Input(const size_t index) const {
    auto var = InputVar(index);
Y
Yan Chunwei 已提交
210
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%d) should not be nullptr", index);
211
    return &var->Get<T>();
212 213 214
  }

  template <typename T>
215 216
  T* Output(const size_t index) const {
    auto var = OutputVar(index);
Y
Yan Chunwei 已提交
217 218
    PADDLE_ENFORCE_NOT_NULL(
        var,
Y
Yan Chunwei 已提交
219 220 221
        "Output(%d) not be nullptr, which means variable [%s] does not "
        "exist in scope",
        index, op_.outputs_[index]);
222
    return var->GetMutable<T>();
223 224 225 226
  }

  template <typename T>
  const T* Input(const std::string& name) const {
227
    auto var = InputVar(name);
Y
Yan Chunwei 已提交
228
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
229
    return &var->Get<T>();
230 231 232 233
  }

  template <typename T>
  T* Output(const std::string& name) const {
234
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
235
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
236
    return var->GetMutable<T>();
237 238 239 240 241 242 243 244
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
245
                   [&](const std::string& sub_name) {
246
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
247 248 249
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
250
                     return &var->Get<T>();
251 252 253 254 255 256 257 258 259 260
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
261
                   [&](const std::string& sub_name) {
262
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
263 264 265
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
266
                     return var->GetMutable<T>();
267 268 269 270 271
                   });
    return res;
  }

  const OperatorBase& op_;
272
  const Scope& scope_;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

290
class ExecutionContext : public InferShapeContext {
291
 public:
292
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
293
                   const platform::DeviceContext* device_context)
294
      : InferShapeContext(op, scope), device_context_(device_context) {}
295

Q
qijun 已提交
296 297 298
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
299
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
300

D
dongzhihong 已提交
301
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
302

D
dongzhihong 已提交
303
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
304 305
};

Q
qijun 已提交
306 307
class OpKernel {
 public:
Q
qijun 已提交
308
  /**
309
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
310 311
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
312
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
313 314
   */

315
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
316 317 318 319

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
320 321
class OperatorWithKernel : public OperatorBase {
 public:
Y
Update  
Yi Wang 已提交
322
  OperatorWithKernel() {}  // TODO(yi): This constructor is to be removed.
323 324 325 326 327 328 329
  OperatorWithKernel(const std::string& type,
                     const std::vector<std::string>& inputs,
                     const std::vector<std::string>& outputs,
                     const AttributeMap& attrs,
                     std::unordered_map<std::string, int>* in_out_idxs)
      : OperatorBase(type, inputs, outputs, attrs, in_out_idxs) {}

Y
Yu Yang 已提交
330 331
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
332

Y
Yu Yang 已提交
333
    OpKernelKey() = default;
L
liaogang 已提交
334
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
335 336 337
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
338 339 340
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
341 342 343 344 345 346 347 348 349 350 351
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
352

353
  void InferShape(const Scope& scope) const override {
354
    InferShape(InferShapeContext(*this, scope));
355 356
  }

Y
Yu Yang 已提交
357
  void Run(const Scope& scope,
Y
Yu Yang 已提交
358
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
359
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
360
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
361 362
  }

Y
Yu Yang 已提交
363 364 365 366
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
367
  }
Y
Yan Chunwei 已提交
368

369 370 371 372 373 374
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
375
 protected:
376
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
377 378 379 380
};

}  // namespace framework
}  // namespace paddle