yolov3_loss_op.h 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35 36 37 38
static T SCE(T x, T label) {
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

D
dengkaipeng 已提交
39 40 41 42 43
template <typename T>
static T L2Loss(T x, T y) {
  return 0.5 * (y - x) * (y - x);
}

44 45 46 47 48
template <typename T>
static T SCEGrad(T x, T label) {
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

D
dengkaipeng 已提交
49 50 51 52 53
template <typename T>
static T L2LossGrad(T x, T y) {
  return x - y;
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
  float x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
D
dengkaipeng 已提交
124
                                int input_size, int stride) {
125 126 127 128 129
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

D
dengkaipeng 已提交
130
  T scale = (2.0 - gt.w * gt.h);
131 132
  loss[0] += SCE<T>(input[box_idx], tx) * scale;
  loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
D
dengkaipeng 已提交
133 134
  loss[0] += L2Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L2Loss<T>(input[box_idx + 3 * stride], th) * scale;
135 136 137 138 139 140
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
D
dengkaipeng 已提交
141
                                    int grid_size, int input_size, int stride) {
142 143 144 145 146
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

D
dengkaipeng 已提交
147
  T scale = (2.0 - gt.w * gt.h);
148 149 150 151
  input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
  input_grad[box_idx + stride] =
      SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
  input_grad[box_idx + 2 * stride] =
D
dengkaipeng 已提交
152
      L2LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
153
  input_grad[box_idx + 3 * stride] =
D
dengkaipeng 已提交
154
      L2LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
155 156 157 158
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
D
dengkaipeng 已提交
159
                                 const int label, const int class_num,
D
dengkaipeng 已提交
160
                                 const int stride) {
D
dengkaipeng 已提交
161 162
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
D
dengkaipeng 已提交
163
    loss[0] += SCE<T>(pred, (i == label) ? 1.0 : 0.0);
164 165 166 167 168 169
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
D
dengkaipeng 已提交
170
                                     const int label, const int class_num,
D
dengkaipeng 已提交
171
                                     const int stride) {
D
dengkaipeng 已提交
172 173 174
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
    input_grad[index + i * stride] =
D
dengkaipeng 已提交
175
        SCEGrad<T>(pred, (i == label) ? 1.0 : 0.0) * loss;
176 177 178 179
  }
}

template <typename T>
D
dengkaipeng 已提交
180
static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
181 182 183 184 185 186 187
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
188
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
189 190
          if (obj > 1e-5) {
            // positive sample: obj = mixup score
D
dengkaipeng 已提交
191
            loss[i] += SCE<T>(input[k * w + l], 1.0);
D
dengkaipeng 已提交
192 193 194
          } else if (obj > -0.5) {
            // negetive sample: obj = 0
            loss[i] += SCE<T>(input[k * w + l], 0.0);
195 196 197 198 199 200 201 202 203 204 205
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
D
dengkaipeng 已提交
206
                                       const T* input, const T* objness,
207 208 209 210 211 212 213
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
214
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
215
          if (obj > 1e-5) {
D
dengkaipeng 已提交
216
            input_grad[k * w + l] = SCEGrad<T>(input[k * w + l], 1.0) * loss[i];
D
dengkaipeng 已提交
217 218
          } else if (obj > -0.5) {
            input_grad[k * w + l] = SCEGrad<T>(input[k * w + l], 0.0) * loss[i];
219 220 221 222 223 224 225 226 227 228
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

245
template <typename T>
246 247 248 249
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
250 251
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
252
    auto* loss = ctx.Output<Tensor>("Loss");
253 254
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
255
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
256
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
257 258
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
259
    int downsample = ctx.Attr<int>("downsample");
260 261 262 263 264

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
265 266 267
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
    int input_size = downsample * h;
268

269 270 271
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

272 273 274
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
275
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
276
    memset(loss_data, 0, loss->numel() * sizeof(T));
D
dengkaipeng 已提交
277 278 279
    T* obj_mask_data =
        objness_mask->mutable_data<T>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(T));
280 281
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
282

283 284 285 286 287 288
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

289 290 291 292
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
293 294
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
295
            int box_idx =
D
dengkaipeng 已提交
296 297 298
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
299 300
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
301
              if (!gt_valid_mask_data[i * b + t]) {
302 303
                continue;
              }
304
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
305
              T iou = CalcBoxIoU(pred, gt);
306 307 308 309 310 311 312
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
D
dengkaipeng 已提交
313
              obj_mask_data[obj_idx] = static_cast<T>(-1);
314
            }
315 316 317
            // TODO(dengkaipeng): all losses should be calculated if best IoU
            // is bigger then truth thresh should be calculated here, but
            // currently, truth thresh is an unreachable value as 1.0.
318 319 320 321
          }
        }
      }
      for (int t = 0; t < b; t++) {
322
        if (!gt_valid_mask_data[i * b + t]) {
323
          gt_match_mask_data[i * b + t] = -1;
324 325
          continue;
        }
326
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
327 328 329 330 331 332 333
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
334 335 336
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
337 338 339 340 341 342
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
343
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
344 345
          // TODO(dengkaipeng): In paper, objectness loss is ignore when
          // best IoU > 0.5, but darknet code didn't implement this.
346 347 348 349 350 351
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
352
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
353
        gt_match_mask_data[i * b + t] = mask_idx;
354
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
355 356
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
357
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
D
dengkaipeng 已提交
358
                                 box_idx, gi, gj, h, input_size, stride);
359 360

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
D
dengkaipeng 已提交
361
          obj_mask_data[obj_idx] = 1.0;
362 363

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
364 365
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
D
dengkaipeng 已提交
366
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
D
dengkaipeng 已提交
367
                           class_num, stride);
368 369 370 371
        }
      }
    }

372
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
373
                       mask_num, h, w, stride, an_stride);
374 375 376
  }
};

377
template <typename T>
378 379 380
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
381
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
382 383
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
384 385
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
386 387
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
388
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
389
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
390
    int class_num = ctx.Attr<int>("class_num");
391
    int downsample = ctx.Attr<int>("downsample");
392

393 394 395 396
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
397
    const int mask_num = anchor_mask.size();
398
    const int b = gt_match_mask->dims()[1];
399 400
    int input_size = downsample * h;

401 402 403
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

404 405 406 407
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
    const T* loss_grad_data = loss_grad->data<T>();
D
dengkaipeng 已提交
408
    const T* obj_mask_data = objness_mask->data<T>();
409
    const int* gt_match_mask_data = gt_match_mask->data<int>();
410 411
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
412 413 414 415
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
416
        int mask_idx = gt_match_mask_data[i * b + t];
417
        if (mask_idx >= 0) {
D
dengkaipeng 已提交
418 419 420 421
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
422 423
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
D
dengkaipeng 已提交
424 425 426
          CalcBoxLocationLossGrad<T>(
              input_grad_data, loss_grad_data[i], input_data, gt, anchors,
              anchor_mask[mask_idx], box_idx, gi, gj, h, input_size, stride);
427 428

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
429 430
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
431
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
D
dengkaipeng 已提交
432
                               label_idx, label, class_num, stride);
433 434 435 436 437
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
438
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
439
                           h, w, stride, an_stride);
440 441 442 443 444
  }
};

}  // namespace operators
}  // namespace paddle