fleet_wrapper.h 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#ifdef PADDLE_WITH_PSLIB
19
#include <archive.h>
D
dongdaxiang 已提交
20
#include <pslib.h>
21
#endif
22
#include <ThreadPool.h>
23
#include <atomic>
X
xujiaqi01 已提交
24
#include <ctime>
D
dongdaxiang 已提交
25
#include <map>
D
dongdaxiang 已提交
26
#include <random>
27
#include <string>
28
#include <unordered_map>
29
#include <vector>
30

T
Thunderbrook 已提交
31
#include "paddle/fluid/framework/heter_service.h"
D
dongdaxiang 已提交
32
#include "paddle/fluid/framework/program_desc.h"
33
#include "paddle/fluid/framework/scope.h"
34
#include "paddle/fluid/framework/tensor.h"
35 36 37
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN

W
wanghuancoder 已提交
38 39 40 41 42 43
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
namespace paddle {
namespace framework {

// A wrapper class for pslib.h, this class follows Singleton pattern
// i.e. only initialized once in the current process
// Example:
//    std::shared_ptr<FleetWrapper> fleet_ptr =
//         FleetWrapper::GetInstance();
//    string dist_desc;
//    fleet_ptr->InitServer(dist_desc, 0);
// interface design principles:
// Pull
//   Sync: PullSparseVarsSync
//   Async: PullSparseVarsAsync(not implemented currently)
// Push
//   Sync: PushSparseVarsSync
60 61
//   Async: PushSparseVarsAsync(not implemented currently)
//   Async: PushSparseVarsWithLabelAsync(with special usage)
62 63 64 65 66 67 68
// Push dense variables to server in Async mode
// Param<in>: scope, table_id, var_names
// Param<out>: push_sparse_status

class FleetWrapper {
 public:
  virtual ~FleetWrapper() {}
69 70 71 72
  FleetWrapper() {
    scale_sparse_gradient_with_batch_size_ = true;
    // trainer sleep some time for pslib core dump
    sleep_seconds_before_fail_exit_ = 300;
73 74 75 76 77 78
    // pslib request server timeout ms
    client2client_request_timeout_ms_ = 500000;
    // pslib connect server timeout_ms
    client2client_connect_timeout_ms_ = 10000;
    // pslib request max retry
    client2client_max_retry_ = 3;
79
    pull_local_thread_num_ = 25;
80
  }
81

X
xujiaqi01 已提交
82
  // set client to client communication config
83 84 85
  void SetClient2ClientConfig(int request_timeout_ms, int connect_timeout_ms,
                              int max_retry);

86 87 88
  void SetPullLocalThreadNum(int thread_num) {
    pull_local_thread_num_ = thread_num;
  }
89

T
Thunderbrook 已提交
90 91 92 93 94 95 96 97
#ifdef PADDLE_WITH_PSLIB
  void HeterPullSparseVars(int workerid, std::shared_ptr<HeterTask> task,
                           const uint64_t table_id,
                           const std::vector<std::string>& var_names,
                           int fea_dim,
                           const std::vector<std::string>& var_emb_names);

  void HeterPushSparseVars(
T
Thunderbrook 已提交
98 99
      std::shared_ptr<HeterTask> task, const Scope& scope,
      const uint64_t table_id, const std::vector<std::string>& sparse_key_names,
T
Thunderbrook 已提交
100 101 102 103 104 105 106 107
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<::std::future<int32_t>>* push_sparse_status,
      const bool use_cvm, const bool dump_slot, const bool no_cvm);
#endif

  typedef std::function<void(int, int)> HeterCallBackFunc;
  int RegisterHeterCallback(HeterCallBackFunc handler);

X
xujiaqi01 已提交
108
  // Pull sparse variables from server in sync mode
109
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim, var_emb_names
110 111 112 113 114
  // Param<out>: fea_values
  void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
115 116
                          int fea_dim,
                          const std::vector<std::string>& var_emb_names);
117 118 119 120

  // Pull sparse variables from server in async mode
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim
  // Param<out>: fea_values std::future
121 122 123 124 125
  std::future<int32_t> PullSparseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<uint64_t>* fea_keys,
      std::vector<std::vector<float>>* fea_values, int fea_dim);
126 127 128 129 130 131 132 133

  // Pull sparse variables from server in sync mode
  // pull immediately to tensors
  void PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
                              uint64_t padding_id, platform::Place place,
                              std::vector<const LoDTensor*>* inputs,  // NOLINT
                              std::vector<LoDTensor*>* outputs);      // NOLINT

X
xujiaqi01 已提交
134
  // pull dense variables from server in sync mod
135 136
  // Param<in>: scope, table_id, var_names
  // Param<out>: void
137 138 139
  void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
140 141 142
  // pull dense variables from server in async mod
  // Param<in>: scope, table_id, var_names
  // Param<out>: pull_dense_status
143 144 145
  void PullDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
T
Thunderbrook 已提交
146
      std::vector<::std::future<int32_t>>* pull_dense_status, bool in_cpu);
147

X
xujiaqi01 已提交
148
  // push dense parameters(not gradients) to server in sync mode
D
dongdaxiang 已提交
149
  void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
D
dongdaxiang 已提交
150
                          const std::vector<std::string>& var_names);
151

T
Thunderbrook 已提交
152 153 154 155 156 157 158 159 160 161 162
// Push dense variables to server in async mode
// Param<in>: scope, table_id, var_names, scale_datanorm, batch_size
// Param<out>: push_sparse_status
#ifdef PADDLE_WITH_CUDA
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* push_sparse_status,
      float scale_datanorm, int batch_size,
      const paddle::platform::Place& place, cudaStream_t stream,
      cudaEvent_t event);
T
Thunderbrook 已提交
163 164 165 166 167 168 169 170
#endif
#ifdef PADDLE_WITH_XPU
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* push_sparse_status,
      float scale_datanorm, int batch_size,
      const paddle::platform::Place& place);
T
Thunderbrook 已提交
171
#endif
172 173 174
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
175 176
      std::vector<::std::future<int32_t>>* push_sparse_status,
      float scale_datanorm, int batch_size);
177

X
xujiaqi01 已提交
178
  // push dense variables to server in sync mode
D
dongdaxiang 已提交
179 180 181
  void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
182
  // Push sparse variables with labels to server in async mode
183 184 185 186 187 188 189 190 191 192 193 194
  std::vector<std::unordered_map<uint64_t, std::vector<float>>> local_tables_;
  void PullSparseToLocal(const uint64_t table_id, int fea_value_dim);
  void PullSparseVarsFromLocal(const Scope& scope, const uint64_t table_id,
                               const std::vector<std::string>& var_names,
                               std::vector<uint64_t>* fea_keys,
                               std::vector<std::vector<float>>* fea_values,
                               int fea_value_dim);
  void ClearLocalTable();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
  GetLocalTable() {
    return local_tables_;
  }
195

196
  // This is specially designed for click/show stats in server
X
xujiaqi01 已提交
197 198
  // Param<in>: scope, table_id, fea_keys, fea_labels, sparse_key_names,
  //            sparse_grad_names, batch_size, use_cvm, dump_slot
199 200 201 202 203 204 205 206
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<std::vector<float>>* push_values,
207
      std::vector<::std::future<int32_t>>* push_sparse_status,
208
      const int batch_size, const bool use_cvm, const bool dump_slot,
209
      std::vector<uint64_t>* sparse_push_keys, const bool no_cvm);
210

211 212 213 214 215 216 217 218 219
  // Push sparse variables to server in async mode
  void PushSparseFromTensorWithLabelAsync(
      const Scope& scope, const uint64_t table_id, int fea_dim,
      uint64_t padding_id, bool scale_sparse, const std::string& accesor,
      const std::string& click_name, platform::Place place,
      const std::vector<std::string>& input_names,
      std::vector<const LoDTensor*>* inputs,    // NOLINT
      std::vector<const LoDTensor*>* outputs);  // NOLINT

220 221 222 223 224 225 226 227 228 229 230 231 232
  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status
  /*
  void PushSparseVarsAsync(
          const Scope& scope,
          const uint64_t table_id,
          const std::vector<uint64_t>& fea_keys,
          const std::vector<std::string>& sparse_grad_names,
          std::vector<std::vector<float>>* push_values,
          std::vector<::std::future<int32_t>>* push_sparse_status);
  */

X
xujiaqi01 已提交
233
  // init server
234
  void InitServer(const std::string& dist_desc, int index);
X
xujiaqi01 已提交
235
  // init trainer
236 237 238
  void InitWorker(const std::string& dist_desc,
                  const std::vector<uint64_t>& host_sign_list, int node_num,
                  int index);
X
xujiaqi01 已提交
239
  // stop server
240
  void StopServer();
241 242
  // finalize worker to make worker can be stop
  void FinalizeWorker();
X
xujiaqi01 已提交
243
  // run server
244
  uint64_t RunServer();
245 246
  // run server with ip port
  uint64_t RunServer(const std::string& ip, uint32_t port);
X
xujiaqi01 已提交
247
  // gather server ip
248
  void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
X
xjqbest 已提交
249
  // gather client ip
X
xjqbest 已提交
250
  void GatherClients(const std::vector<uint64_t>& host_sign_list);
X
xjqbest 已提交
251
  // get client info
X
xjqbest 已提交
252
  std::vector<uint64_t> GetClientsInfo();
X
xjqbest 已提交
253
  // create client to client connection
X
xjqbest 已提交
254
  void CreateClient2ClientConnection();
255 256
  // flush all push requests
  void ClientFlush();
257 258 259 260
  // load from paddle model
  void LoadFromPaddleModel(Scope& scope, const uint64_t table_id,  // NOLINT
                           std::vector<std::string> var_list,
                           std::string model_path, std::string model_proto_file,
261
                           std::vector<std::string> table_var_list,
262
                           bool load_combine);
263 264

  void PrintTableStat(const uint64_t table_id);
265
  // mode = 0, load all feature
X
xujiaqi01 已提交
266
  // mode = 1, load delta feature, which means load diff
267
  void LoadModel(const std::string& path, const int mode);
268
  // mode = 0, load all feature
X
xujiaqi01 已提交
269
  // mode = 1, load delta feature, which means load diff
270 271
  void LoadModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
272 273 274
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModel(const std::string& path, const int mode);
275 276
  void SaveMultiTableOnePath(const std::vector<int>& table_ids,
                             const std::string& path, const int mode);
X
xujiaqi01 已提交
277 278 279 280 281 282 283
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
  // save model with prefix
  void SaveModelOneTablePrefix(const uint64_t table_id, const std::string& path,
                               const int mode, const std::string& prefix);
X
xujiaqi01 已提交
284
  // get save cache threshold
285
  double GetCacheThreshold(int table_id);
X
xujiaqi01 已提交
286
  // shuffle cache model between servers
287 288
  void CacheShuffle(int table_id, const std::string& path, const int mode,
                    const double cache_threshold);
X
xujiaqi01 已提交
289 290
  // save cache model
  // cache model can speed up online predict
291
  int32_t SaveCache(int table_id, const std::string& path, const int mode);
292 293 294 295 296
  // save sparse table filtered by user-defined whitelist
  int32_t SaveWithWhitelist(int table_id, const std::string& path,
                            const int mode, const std::string& whitelist_path);
  void LoadWithWhitelist(const uint64_t table_id, const std::string& path,
                         const int mode);
X
xujiaqi01 已提交
297 298 299 300 301 302 303
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTable(const uint64_t src_table_id, const uint64_t dest_table_id);
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTableByFeasign(const uint64_t src_table_id,
                             const uint64_t dest_table_id,
                             const std::vector<uint64_t>& feasign_list);
  // clear all models, release their memory
304
  void ClearModel();
X
xujiaqi01 已提交
305 306
  // clear one table
  void ClearOneTable(const uint64_t table_id);
X
xujiaqi01 已提交
307
  // shrink sparse table
308
  void ShrinkSparseTable(int table_id);
X
xujiaqi01 已提交
309
  // shrink dense table
310
  void ShrinkDenseTable(int table_id, Scope* scope,
311 312
                        std::vector<std::string> var_list, float decay,
                        int emb_dim);
313

D
dongdaxiang 已提交
314
  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
X
xujiaqi01 已提交
315
  // register client to client communication
316
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
X
xjqbest 已提交
317
  // send client to client message
D
dongdaxiang 已提交
318 319
  std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
                                             const std::string& msg);
320 321 322 323
  // confirm all the updated params in the current pass
  void Confirm();
  // revert all the updated params in the current pass
  void Revert();
X
xujiaqi01 已提交
324
  // FleetWrapper singleton
325 326 327 328 329 330
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::FleetWrapper());
    }
    return s_instance_;
  }
331 332 333
  // this performs better than rand_r, especially large data
  std::default_random_engine& LocalRandomEngine();

334 335 336 337
#ifdef PADDLE_WITH_PSLIB
  static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif

338 339
 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
X
xjqbest 已提交
340
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
341
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
X
xjqbest 已提交
342
#endif
343

344 345 346
  size_t GetAbsoluteSum(size_t start, size_t end, size_t level,
                        const framework::LoD& lod);

347
 protected:
348
  static bool is_initialized_;
349
  bool scale_sparse_gradient_with_batch_size_;
350
  int32_t sleep_seconds_before_fail_exit_;
351 352 353
  int client2client_request_timeout_ms_;
  int client2client_connect_timeout_ms_;
  int client2client_max_retry_;
354 355 356 357
  std::unique_ptr<::ThreadPool> local_pull_pool_{nullptr};
  int pull_local_thread_num_;
  std::unique_ptr<::ThreadPool> pull_to_local_pool_{nullptr};
  int local_table_shard_num_;
358 359 360 361 362
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace framework
}  // end namespace paddle