fleet_wrapper.h 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#ifdef PADDLE_WITH_PSLIB
19
#include <archive.h>
D
dongdaxiang 已提交
20
#include <pslib.h>
21
#endif
22
#include <atomic>
X
xujiaqi01 已提交
23
#include <ctime>
D
dongdaxiang 已提交
24
#include <map>
D
dongdaxiang 已提交
25
#include <random>
26 27
#include <string>
#include <vector>
D
dongdaxiang 已提交
28
#include "paddle/fluid/framework/program_desc.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN

namespace paddle {
namespace framework {

// A wrapper class for pslib.h, this class follows Singleton pattern
// i.e. only initialized once in the current process
// Example:
//    std::shared_ptr<FleetWrapper> fleet_ptr =
//         FleetWrapper::GetInstance();
//    string dist_desc;
//    fleet_ptr->InitServer(dist_desc, 0);
// interface design principles:
// Pull
//   Sync: PullSparseVarsSync
//   Async: PullSparseVarsAsync(not implemented currently)
// Push
//   Sync: PushSparseVarsSync
49 50
//   Async: PushSparseVarsAsync(not implemented currently)
//   Async: PushSparseVarsWithLabelAsync(with special usage)
51 52 53 54 55 56 57
// Push dense variables to server in Async mode
// Param<in>: scope, table_id, var_names
// Param<out>: push_sparse_status

class FleetWrapper {
 public:
  virtual ~FleetWrapper() {}
58
  FleetWrapper() { scale_sparse_gradient_with_batch_size_ = true; }
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  // Pull sparse variables from server in Sync mode
  // Param<in>: scope, table_id, var_names, fea_keys
  // Param<out>: fea_values
  void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
                          int fea_dim);

  void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

  void PullDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* pull_dense_status);

D
dongdaxiang 已提交
76
  void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
D
dongdaxiang 已提交
77
                          const std::vector<std::string>& var_names);
78

79 80 81 82 83 84 85 86
  // Push dense variables to server in async mode
  // Param<in>: scope, table_id, var_names,
  // Param<out>: push_sparse_status
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* push_sparse_status);

D
dongdaxiang 已提交
87 88 89
  void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

90 91 92 93 94 95 96 97 98 99 100 101
  // Push sparse variables with labels to server in Async mode
  // This is specially designed for click/show stats in server
  // Param<in>: scope, table_id, var_grad_names,
  //            fea_keys, fea_labels, sparse_grad_names
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<std::vector<float>>* push_values,
102 103
      std::vector<::std::future<int32_t>>* push_sparse_status,
      const int batch_size, const bool use_cvm);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status
  /*
  void PushSparseVarsAsync(
          const Scope& scope,
          const uint64_t table_id,
          const std::vector<uint64_t>& fea_keys,
          const std::vector<std::string>& sparse_grad_names,
          std::vector<std::vector<float>>* push_values,
          std::vector<::std::future<int32_t>>* push_sparse_status);
  */

  void InitServer(const std::string& dist_desc, int index);
  void InitWorker(const std::string& dist_desc,
                  const std::vector<uint64_t>& host_sign_list, int node_num,
                  int index);
  void StopServer();
  uint64_t RunServer();
  void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
X
xjqbest 已提交
125
  // gather client ip
X
xjqbest 已提交
126
  void GatherClients(const std::vector<uint64_t>& host_sign_list);
X
xjqbest 已提交
127
  // get client info
X
xjqbest 已提交
128
  std::vector<uint64_t> GetClientsInfo();
X
xjqbest 已提交
129
  // create client to client connection
X
xjqbest 已提交
130
  void CreateClient2ClientConnection();
131

132 133 134 135 136 137 138 139 140 141 142 143 144
  // flush all push requests
  void ClientFlush();
  // mode = 0, load all feature
  // mode = 1, laod delta feature, which means load diff
  void LoadModel(const std::string& path, const int mode);
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModel(const std::string& path, const int mode);

  void ShrinkSparseTable(int table_id);
  void ShrinkDenseTable(int table_id, Scope* scope,
                        std::vector<std::string> var_list, float decay);

X
xjqbest 已提交
145
  // register client to client communication
D
dongdaxiang 已提交
146
  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
147
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
X
xjqbest 已提交
148
  // send client to client message
D
dongdaxiang 已提交
149 150
  std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
                                             const std::string& msg);
151

D
dongdaxiang 已提交
152
  template <typename T>
153
  void Serialize(const std::vector<T*>& t, std::string* str);
D
dongdaxiang 已提交
154
  template <typename T>
155
  void Deserialize(std::vector<T>* t, const std::string& str);
156 157 158 159 160 161 162
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::FleetWrapper());
    }
    return s_instance_;
  }

163 164 165
  // this performs better than rand_r, especially large data
  std::default_random_engine& LocalRandomEngine();

166 167 168 169
#ifdef PADDLE_WITH_PSLIB
  static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif

170 171
 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
X
xjqbest 已提交
172
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
173
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
X
xjqbest 已提交
174
#endif
175

176
 protected:
177
  static bool is_initialized_;
178
  bool scale_sparse_gradient_with_batch_size_;
179 180 181 182 183
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace framework
}  // end namespace paddle