fleet_wrapper.h 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#ifdef PADDLE_WITH_PSLIB
19
#include <archive.h>
D
dongdaxiang 已提交
20
#include <pslib.h>
21
#endif
22
#include <ThreadPool.h>
23
#include <atomic>
X
xujiaqi01 已提交
24
#include <ctime>
D
dongdaxiang 已提交
25
#include <map>
D
dongdaxiang 已提交
26
#include <random>
27
#include <string>
28
#include <unordered_map>
29
#include <vector>
30

T
Thunderbrook 已提交
31
#include "paddle/fluid/framework/heter_service.h"
D
dongdaxiang 已提交
32
#include "paddle/fluid/framework/program_desc.h"
33
#include "paddle/fluid/framework/scope.h"
34
#include "paddle/fluid/framework/tensor.h"
35 36 37
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN

W
wanghuancoder 已提交
38 39 40 41 42 43
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
namespace paddle {
namespace framework {

// A wrapper class for pslib.h, this class follows Singleton pattern
// i.e. only initialized once in the current process
// Example:
//    std::shared_ptr<FleetWrapper> fleet_ptr =
//         FleetWrapper::GetInstance();
//    string dist_desc;
//    fleet_ptr->InitServer(dist_desc, 0);
// interface design principles:
// Pull
//   Sync: PullSparseVarsSync
//   Async: PullSparseVarsAsync(not implemented currently)
// Push
//   Sync: PushSparseVarsSync
60 61
//   Async: PushSparseVarsAsync(not implemented currently)
//   Async: PushSparseVarsWithLabelAsync(with special usage)
62 63 64 65 66 67 68
// Push dense variables to server in Async mode
// Param<in>: scope, table_id, var_names
// Param<out>: push_sparse_status

class FleetWrapper {
 public:
  virtual ~FleetWrapper() {}
69 70 71 72
  FleetWrapper() {
    scale_sparse_gradient_with_batch_size_ = true;
    // trainer sleep some time for pslib core dump
    sleep_seconds_before_fail_exit_ = 300;
73 74 75 76 77 78
    // pslib request server timeout ms
    client2client_request_timeout_ms_ = 500000;
    // pslib connect server timeout_ms
    client2client_connect_timeout_ms_ = 10000;
    // pslib request max retry
    client2client_max_retry_ = 3;
79
    pull_local_thread_num_ = 25;
80
  }
81

X
xujiaqi01 已提交
82
  // set client to client communication config
83 84 85
  void SetClient2ClientConfig(int request_timeout_ms, int connect_timeout_ms,
                              int max_retry);

86 87 88
  void SetPullLocalThreadNum(int thread_num) {
    pull_local_thread_num_ = thread_num;
  }
89

T
Thunderbrook 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#ifdef PADDLE_WITH_PSLIB
  void HeterPullSparseVars(int workerid, std::shared_ptr<HeterTask> task,
                           const uint64_t table_id,
                           const std::vector<std::string>& var_names,
                           int fea_dim,
                           const std::vector<std::string>& var_emb_names);

  void HeterPushSparseVars(
      std::shared_ptr<HeterTask> task, const uint64_t table_id,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<::std::future<int32_t>>* push_sparse_status,
      const bool use_cvm, const bool dump_slot, const bool no_cvm);
#endif

  typedef std::function<void(int, int)> HeterCallBackFunc;
  int RegisterHeterCallback(HeterCallBackFunc handler);

X
xujiaqi01 已提交
108
  // Pull sparse variables from server in sync mode
109
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim, var_emb_names
110 111 112 113 114
  // Param<out>: fea_values
  void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
115 116
                          int fea_dim,
                          const std::vector<std::string>& var_emb_names);
117 118 119 120

  // Pull sparse variables from server in async mode
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim
  // Param<out>: fea_values std::future
121 122 123 124 125
  std::future<int32_t> PullSparseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<uint64_t>* fea_keys,
      std::vector<std::vector<float>>* fea_values, int fea_dim);
126 127 128 129 130 131 132 133

  // Pull sparse variables from server in sync mode
  // pull immediately to tensors
  void PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
                              uint64_t padding_id, platform::Place place,
                              std::vector<const LoDTensor*>* inputs,  // NOLINT
                              std::vector<LoDTensor*>* outputs);      // NOLINT

X
xujiaqi01 已提交
134
  // pull dense variables from server in sync mod
135 136
  // Param<in>: scope, table_id, var_names
  // Param<out>: void
137 138 139
  void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
140 141 142
  // pull dense variables from server in async mod
  // Param<in>: scope, table_id, var_names
  // Param<out>: pull_dense_status
143 144 145
  void PullDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
T
Thunderbrook 已提交
146
      std::vector<::std::future<int32_t>>* pull_dense_status, bool in_cpu);
147

X
xujiaqi01 已提交
148
  // push dense parameters(not gradients) to server in sync mode
D
dongdaxiang 已提交
149
  void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
D
dongdaxiang 已提交
150
                          const std::vector<std::string>& var_names);
151

T
Thunderbrook 已提交
152 153 154 155 156 157 158 159 160 161 162 163
// Push dense variables to server in async mode
// Param<in>: scope, table_id, var_names, scale_datanorm, batch_size
// Param<out>: push_sparse_status
#ifdef PADDLE_WITH_CUDA
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* push_sparse_status,
      float scale_datanorm, int batch_size,
      const paddle::platform::Place& place, cudaStream_t stream,
      cudaEvent_t event);
#endif
164 165 166
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
167 168
      std::vector<::std::future<int32_t>>* push_sparse_status,
      float scale_datanorm, int batch_size);
169

X
xujiaqi01 已提交
170
  // push dense variables to server in sync mode
D
dongdaxiang 已提交
171 172 173
  void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
174
  // Push sparse variables with labels to server in async mode
175 176 177 178 179 180 181 182 183 184 185 186
  std::vector<std::unordered_map<uint64_t, std::vector<float>>> local_tables_;
  void PullSparseToLocal(const uint64_t table_id, int fea_value_dim);
  void PullSparseVarsFromLocal(const Scope& scope, const uint64_t table_id,
                               const std::vector<std::string>& var_names,
                               std::vector<uint64_t>* fea_keys,
                               std::vector<std::vector<float>>* fea_values,
                               int fea_value_dim);
  void ClearLocalTable();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
  GetLocalTable() {
    return local_tables_;
  }
187

188
  // This is specially designed for click/show stats in server
X
xujiaqi01 已提交
189 190
  // Param<in>: scope, table_id, fea_keys, fea_labels, sparse_key_names,
  //            sparse_grad_names, batch_size, use_cvm, dump_slot
191 192 193 194 195 196 197 198
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<std::vector<float>>* push_values,
199
      std::vector<::std::future<int32_t>>* push_sparse_status,
200
      const int batch_size, const bool use_cvm, const bool dump_slot,
201
      std::vector<uint64_t>* sparse_push_keys, const bool no_cvm);
202

203 204 205 206 207 208 209 210 211
  // Push sparse variables to server in async mode
  void PushSparseFromTensorWithLabelAsync(
      const Scope& scope, const uint64_t table_id, int fea_dim,
      uint64_t padding_id, bool scale_sparse, const std::string& accesor,
      const std::string& click_name, platform::Place place,
      const std::vector<std::string>& input_names,
      std::vector<const LoDTensor*>* inputs,    // NOLINT
      std::vector<const LoDTensor*>* outputs);  // NOLINT

212 213 214 215 216 217 218 219 220 221 222 223 224
  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status
  /*
  void PushSparseVarsAsync(
          const Scope& scope,
          const uint64_t table_id,
          const std::vector<uint64_t>& fea_keys,
          const std::vector<std::string>& sparse_grad_names,
          std::vector<std::vector<float>>* push_values,
          std::vector<::std::future<int32_t>>* push_sparse_status);
  */

X
xujiaqi01 已提交
225
  // init server
226
  void InitServer(const std::string& dist_desc, int index);
X
xujiaqi01 已提交
227
  // init trainer
228 229 230
  void InitWorker(const std::string& dist_desc,
                  const std::vector<uint64_t>& host_sign_list, int node_num,
                  int index);
X
xujiaqi01 已提交
231
  // stop server
232
  void StopServer();
233 234
  // finalize worker to make worker can be stop
  void FinalizeWorker();
X
xujiaqi01 已提交
235
  // run server
236
  uint64_t RunServer();
237 238
  // run server with ip port
  uint64_t RunServer(const std::string& ip, uint32_t port);
X
xujiaqi01 已提交
239
  // gather server ip
240
  void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
X
xjqbest 已提交
241
  // gather client ip
X
xjqbest 已提交
242
  void GatherClients(const std::vector<uint64_t>& host_sign_list);
X
xjqbest 已提交
243
  // get client info
X
xjqbest 已提交
244
  std::vector<uint64_t> GetClientsInfo();
X
xjqbest 已提交
245
  // create client to client connection
X
xjqbest 已提交
246
  void CreateClient2ClientConnection();
247 248
  // flush all push requests
  void ClientFlush();
249 250 251 252
  // load from paddle model
  void LoadFromPaddleModel(Scope& scope, const uint64_t table_id,  // NOLINT
                           std::vector<std::string> var_list,
                           std::string model_path, std::string model_proto_file,
253
                           std::vector<std::string> table_var_list,
254
                           bool load_combine);
255 256

  void PrintTableStat(const uint64_t table_id);
257
  // mode = 0, load all feature
X
xujiaqi01 已提交
258
  // mode = 1, load delta feature, which means load diff
259
  void LoadModel(const std::string& path, const int mode);
260
  // mode = 0, load all feature
X
xujiaqi01 已提交
261
  // mode = 1, load delta feature, which means load diff
262 263
  void LoadModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
264 265 266
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModel(const std::string& path, const int mode);
X
xujiaqi01 已提交
267 268 269 270 271 272 273
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
  // save model with prefix
  void SaveModelOneTablePrefix(const uint64_t table_id, const std::string& path,
                               const int mode, const std::string& prefix);
X
xujiaqi01 已提交
274
  // get save cache threshold
275
  double GetCacheThreshold(int table_id);
X
xujiaqi01 已提交
276
  // shuffle cache model between servers
277 278
  void CacheShuffle(int table_id, const std::string& path, const int mode,
                    const double cache_threshold);
X
xujiaqi01 已提交
279 280
  // save cache model
  // cache model can speed up online predict
281
  int32_t SaveCache(int table_id, const std::string& path, const int mode);
282 283 284 285 286
  // save sparse table filtered by user-defined whitelist
  int32_t SaveWithWhitelist(int table_id, const std::string& path,
                            const int mode, const std::string& whitelist_path);
  void LoadWithWhitelist(const uint64_t table_id, const std::string& path,
                         const int mode);
X
xujiaqi01 已提交
287 288 289 290 291 292 293
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTable(const uint64_t src_table_id, const uint64_t dest_table_id);
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTableByFeasign(const uint64_t src_table_id,
                             const uint64_t dest_table_id,
                             const std::vector<uint64_t>& feasign_list);
  // clear all models, release their memory
294
  void ClearModel();
X
xujiaqi01 已提交
295 296
  // clear one table
  void ClearOneTable(const uint64_t table_id);
X
xujiaqi01 已提交
297
  // shrink sparse table
298
  void ShrinkSparseTable(int table_id);
X
xujiaqi01 已提交
299
  // shrink dense table
300
  void ShrinkDenseTable(int table_id, Scope* scope,
301 302
                        std::vector<std::string> var_list, float decay,
                        int emb_dim);
303

D
dongdaxiang 已提交
304
  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
X
xujiaqi01 已提交
305
  // register client to client communication
306
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
X
xjqbest 已提交
307
  // send client to client message
D
dongdaxiang 已提交
308 309
  std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
                                             const std::string& msg);
310 311 312 313
  // confirm all the updated params in the current pass
  void Confirm();
  // revert all the updated params in the current pass
  void Revert();
X
xujiaqi01 已提交
314
  // FleetWrapper singleton
315 316 317 318 319 320
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::FleetWrapper());
    }
    return s_instance_;
  }
321 322 323
  // this performs better than rand_r, especially large data
  std::default_random_engine& LocalRandomEngine();

324 325 326 327
#ifdef PADDLE_WITH_PSLIB
  static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif

328 329
 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
X
xjqbest 已提交
330
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
331
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
X
xjqbest 已提交
332
#endif
333

334 335 336
  size_t GetAbsoluteSum(size_t start, size_t end, size_t level,
                        const framework::LoD& lod);

337
 protected:
338
  static bool is_initialized_;
339
  bool scale_sparse_gradient_with_batch_size_;
340
  int32_t sleep_seconds_before_fail_exit_;
341 342 343
  int client2client_request_timeout_ms_;
  int client2client_connect_timeout_ms_;
  int client2client_max_retry_;
344 345 346 347
  std::unique_ptr<::ThreadPool> local_pull_pool_{nullptr};
  int pull_local_thread_num_;
  std::unique_ptr<::ThreadPool> pull_to_local_pool_{nullptr};
  int local_table_shard_num_;
348 349 350 351 352
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace framework
}  // end namespace paddle