fleet_wrapper.h 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#ifdef PADDLE_WITH_PSLIB
19
#include <archive.h>
D
dongdaxiang 已提交
20
#include <pslib.h>
21
#endif
22
#include <atomic>
X
xujiaqi01 已提交
23
#include <ctime>
D
dongdaxiang 已提交
24
#include <map>
D
dongdaxiang 已提交
25
#include <random>
26 27
#include <string>
#include <vector>
D
dongdaxiang 已提交
28
#include "paddle/fluid/framework/program_desc.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN

namespace paddle {
namespace framework {

// A wrapper class for pslib.h, this class follows Singleton pattern
// i.e. only initialized once in the current process
// Example:
//    std::shared_ptr<FleetWrapper> fleet_ptr =
//         FleetWrapper::GetInstance();
//    string dist_desc;
//    fleet_ptr->InitServer(dist_desc, 0);
// interface design principles:
// Pull
//   Sync: PullSparseVarsSync
//   Async: PullSparseVarsAsync(not implemented currently)
// Push
//   Sync: PushSparseVarsSync
49 50
//   Async: PushSparseVarsAsync(not implemented currently)
//   Async: PushSparseVarsWithLabelAsync(with special usage)
51 52 53 54 55 56 57
// Push dense variables to server in Async mode
// Param<in>: scope, table_id, var_names
// Param<out>: push_sparse_status

class FleetWrapper {
 public:
  virtual ~FleetWrapper() {}
58 59 60 61
  FleetWrapper() {
    scale_sparse_gradient_with_batch_size_ = true;
    // trainer sleep some time for pslib core dump
    sleep_seconds_before_fail_exit_ = 300;
62 63 64 65 66 67
    // pslib request server timeout ms
    client2client_request_timeout_ms_ = 500000;
    // pslib connect server timeout_ms
    client2client_connect_timeout_ms_ = 10000;
    // pslib request max retry
    client2client_max_retry_ = 3;
68
  }
69 70 71 72

  void SetClient2ClientConfig(int request_timeout_ms, int connect_timeout_ms,
                              int max_retry);

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  // Pull sparse variables from server in Sync mode
  // Param<in>: scope, table_id, var_names, fea_keys
  // Param<out>: fea_values
  void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
                          int fea_dim);

  void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

  void PullDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* pull_dense_status);

D
dongdaxiang 已提交
90
  void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
D
dongdaxiang 已提交
91
                          const std::vector<std::string>& var_names);
92

93 94 95 96 97 98
  // Push dense variables to server in async mode
  // Param<in>: scope, table_id, var_names,
  // Param<out>: push_sparse_status
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
99 100
      std::vector<::std::future<int32_t>>* push_sparse_status,
      float scale_datanorm, int batch_size);
101

D
dongdaxiang 已提交
102 103 104
  void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

105 106 107 108 109 110 111 112 113 114 115 116
  // Push sparse variables with labels to server in Async mode
  // This is specially designed for click/show stats in server
  // Param<in>: scope, table_id, var_grad_names,
  //            fea_keys, fea_labels, sparse_grad_names
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<std::vector<float>>* push_values,
117
      std::vector<::std::future<int32_t>>* push_sparse_status,
T
Thunderbrook 已提交
118
      const int batch_size, const bool use_cvm, const bool dump_slot);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status
  /*
  void PushSparseVarsAsync(
          const Scope& scope,
          const uint64_t table_id,
          const std::vector<uint64_t>& fea_keys,
          const std::vector<std::string>& sparse_grad_names,
          std::vector<std::vector<float>>* push_values,
          std::vector<::std::future<int32_t>>* push_sparse_status);
  */

  void InitServer(const std::string& dist_desc, int index);
  void InitWorker(const std::string& dist_desc,
                  const std::vector<uint64_t>& host_sign_list, int node_num,
                  int index);
  void StopServer();
  uint64_t RunServer();
  void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
X
xjqbest 已提交
140
  // gather client ip
X
xjqbest 已提交
141
  void GatherClients(const std::vector<uint64_t>& host_sign_list);
X
xjqbest 已提交
142
  // get client info
X
xjqbest 已提交
143
  std::vector<uint64_t> GetClientsInfo();
X
xjqbest 已提交
144
  // create client to client connection
X
xjqbest 已提交
145
  void CreateClient2ClientConnection();
146

147 148
  // flush all push requests
  void ClientFlush();
149 150 151 152
  // load from paddle model
  void LoadFromPaddleModel(Scope& scope, const uint64_t table_id,  // NOLINT
                           std::vector<std::string> var_list,
                           std::string model_path, std::string model_proto_file,
153
                           std::vector<std::string> table_var_list,
154
                           bool load_combine);
155 156 157
  // mode = 0, load all feature
  // mode = 1, laod delta feature, which means load diff
  void LoadModel(const std::string& path, const int mode);
158 159 160 161
  // mode = 0, load all feature
  // mode = 1, laod delta feature, which means load diff
  void LoadModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
162 163 164 165
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModel(const std::string& path, const int mode);

166 167 168 169 170
  double GetCacheThreshold();
  void CacheShuffle(int table_id, const std::string& path, const int mode,
                    const double cache_threshold);
  int32_t SaveCache(int table_id, const std::string& path, const int mode);

171
  void ClearModel();
172

173 174
  void ShrinkSparseTable(int table_id);
  void ShrinkDenseTable(int table_id, Scope* scope,
175 176
                        std::vector<std::string> var_list, float decay,
                        int emb_dim);
177

X
xjqbest 已提交
178
  // register client to client communication
D
dongdaxiang 已提交
179
  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
180
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
X
xjqbest 已提交
181
  // send client to client message
D
dongdaxiang 已提交
182 183
  std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
                                             const std::string& msg);
184

D
dongdaxiang 已提交
185
  template <typename T>
186
  void Serialize(const std::vector<T*>& t, std::string* str);
D
dongdaxiang 已提交
187
  template <typename T>
188
  void Deserialize(std::vector<T>* t, const std::string& str);
189 190 191 192 193 194 195
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::FleetWrapper());
    }
    return s_instance_;
  }

196 197 198
  // this performs better than rand_r, especially large data
  std::default_random_engine& LocalRandomEngine();

199 200 201 202
#ifdef PADDLE_WITH_PSLIB
  static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif

203 204
 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
X
xjqbest 已提交
205
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
206
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
X
xjqbest 已提交
207
#endif
208

209
 protected:
210
  static bool is_initialized_;
211
  bool scale_sparse_gradient_with_batch_size_;
212
  int32_t sleep_seconds_before_fail_exit_;
213 214 215
  int client2client_request_timeout_ms_;
  int client2client_connect_timeout_ms_;
  int client2client_max_retry_;
216 217 218 219 220
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace framework
}  // end namespace paddle