linalg.py 127.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
L
Ligoml 已提交
17 18 19 20 21 22 23 24 25 26 27
from ..framework import (
    _varbase_creator,
    _dygraph_tracer,
    in_dygraph_mode,
    _non_static_mode,
)
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
Z
zhiboniu 已提交
28
from ..static import Variable
29 30
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
31 32 33
from .math import multiply, add
from .logic import logical_not
from .creation import full
34

A
andyjpaddle 已提交
35
import paddle
36
import warnings
37 38
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
39
from paddle import _C_ops, _legacy_C_ops
40

41 42
__all__ = []

43 44 45
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
98
        return _C_ops.transpose(x, perm)
99 100
    else:
        if _in_legacy_dygraph():
101
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
102 103
            return out

L
Ligoml 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
119 120 121 122 123 124 125 126
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
L
Ligoml 已提交
127 128
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
129 130 131 132 133
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
L
Ligoml 已提交
134 135
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
136 137 138 139

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
140 141 142 143 144 145
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
146 147 148
    return out


S
ShenLiang 已提交
149
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
150
    """
151 152
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
153
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
154

S
ShenLiang 已提交
155 156
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
157 158 159 160 161

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
162 163
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
164 165 166 167 168 169 170 171
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

172 173
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
174
      After the matrix multiply, the prepended dimension is removed.
175 176

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
177 178
      the matrix-vector product is obtained.

179 180 181 182 183 184 185 186 187
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
188
      out will be a (j, k, n, p) tensor.
189 190

    Args:
S
ShenLiang 已提交
191 192
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
193 194 195 196 197 198
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
199
        Tensor: The output Tensor.
200 201 202

    Examples:

C
Chen Long 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
241 242

    """
243
    if in_dygraph_mode():
244
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
245 246 247

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
248
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
249 250
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

251
    attrs = {
S
ShenLiang 已提交
252 253
        'trans_x': transpose_x,
        'trans_y': transpose_y,
254 255 256 257 258
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
259
            check_variable_and_dtype(
L
Ligoml 已提交
260 261
                val,
                name,
262
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
L
Ligoml 已提交
263 264
                'matmul',
            )
265 266 267

    __check_input(x, y)

S
ShenLiang 已提交
268
    helper = LayerHelper('matmul_v2', **locals())
269
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
270 271 272 273 274 275
    helper.append_op(
        type='matmul_v2',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
276
    return out
Z
Zhang Ting 已提交
277 278


myq406450149's avatar
myq406450149 已提交
279
def norm(x, p='fro', axis=None, keepdim=False, name=None):
280
    """
S
swtkiwi 已提交
281

282 283 284
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

285 286 287 288 289 290
    .. note::
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

291
    Args:
myq406450149's avatar
myq406450149 已提交
292
        x (Tensor): The input tensor could be N-D tensor, and the input data
293
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
294
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
295
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
296
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
297 298
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
299
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
300
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
301
            Default value is `None`.
302 303 304 305 306 307 308 309
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
310
        Tensor: results of norm operation on the specified axis of input tensor,
311
        it's data type is the same as input's Tensor.
312

313 314
    Examples:
        .. code-block:: python
315

316
            import paddle
317 318 319 320 321 322 323 324 325
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
326

327
            # compute frobenius norm along last two dimensions.
328
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
329 330
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
331

332
            # compute 2-order vector norm along last dimension.
333
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
334 335 336
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
337 338

            # compute 2-order  norm along [0,1] dimension.
339
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
340 341
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
342 343

            # compute inf-order  norm
344 345 346 347 348 349 350 351 352
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
353 354

            # compute -inf-order  norm
355 356 357 358 359 360 361 362 363
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
364 365
    """

myq406450149's avatar
myq406450149 已提交
366
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
367 368 369 370 371 372 373 374 375 376 377
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
378 379 380

        if in_dygraph_mode():
            if dim is None:
381 382
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
383
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
384
            if dim is None:
L
Ligoml 已提交
385 386 387 388 389 390
                return _legacy_C_ops.frobenius_norm(
                    input, 'keep_dim', keepdim, 'reduce_all', True
                )
            return _legacy_C_ops.frobenius_norm(
                input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False
            )
myq406450149's avatar
myq406450149 已提交
391 392
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
393
            attrs['reduce_all'] = True
L
Ligoml 已提交
394 395 396
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'frobenius_norm'
        )
397 398

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
399
        out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
400 401
            dtype=helper.input_dtype()
        )
402

L
Ligoml 已提交
403 404 405 406 407 408
        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
409 410
        return out

L
Ligoml 已提交
411 412 413
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
414 415 416 417 418 419 420 421
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
422
        if in_dygraph_mode():
L
Ligoml 已提交
423 424
            if axis is None:
                axis = -1
425
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
426 427

        if _in_legacy_dygraph():
L
Ligoml 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440
            if axis is None:
                axis = -1
            return _legacy_C_ops.p_norm(
                input,
                'porder',
                porder,
                'axis',
                axis,
                'keepdim',
                keepdim,
                'asvector',
                asvector,
            )
441

442 443 444 445
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
L
Ligoml 已提交
446 447 448
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'p_norm'
        )
myq406450149's avatar
myq406450149 已提交
449

450 451 452 453
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
454
            'asvector': asvector,
455 456 457
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
458
        out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
459 460
            dtype=helper.input_dtype()
        )
461

L
Ligoml 已提交
462 463 464 465 466 467
        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
468 469
        return out

L
Ligoml 已提交
470 471 472
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
473
        if in_dygraph_mode():
474
            out = _C_ops.abs(input)
L
Ligoml 已提交
475 476 477 478 479
            reduce_all = (
                True
                if axis == None or axis == [] or asvector == True
                else False
            )
480 481 482 483
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
484
                return _C_ops.max(out, axis, keepdim)
485
            else:
486
                return _C_ops.min(out, axis, keepdim)
487

O
OccupyMars2025 已提交
488
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
489
        out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
490 491
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
492 493
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
494 495
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
496

L
Ligoml 已提交
497 498 499
        reduce_all = (
            True if axis == None or axis == [] or asvector == True else False
        )
myq406450149's avatar
myq406450149 已提交
500 501
        axis = axis if axis != None and axis != [] else [0]

L
Ligoml 已提交
502 503 504 505 506 507 508 509 510
        reduce_type = (
            'reduce_max' if porder == np.float64('inf') else 'reduce_min'
        )
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
myq406450149's avatar
myq406450149 已提交
511 512 513

        return reduce_out

L
Ligoml 已提交
514
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
515 516 517 518
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
519
        if in_dygraph_mode():
520 521 522
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
L
Ligoml 已提交
523
            out = _C_ops.pow(sum_out, float(1.0 / porder))
524 525
            return out

myq406450149's avatar
myq406450149 已提交
526 527
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
L
Ligoml 已提交
528 529
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
530
        abs_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
531 532 533 534 535
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
536
        pow_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
537 538
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
539

L
Ligoml 已提交
540 541 542 543 544 545
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
546
        sum_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
565 566
        return out

567 568 569
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
570
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
571 572
            else:
                raise ValueError(
L
Ligoml 已提交
573 574
                    "only valid string values are 'fro', found {}".format(p)
                )
575
        elif isinstance(p, (int, float)):
L
Ligoml 已提交
576 577 578 579 580 581 582 583
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
584
        else:
585
            raise ValueError(
L
Ligoml 已提交
586 587
                "only valid p type is string or float, found {}".format(type(p))
            )
588

myq406450149's avatar
myq406450149 已提交
589 590
    if isinstance(axis, tuple):
        axis = list(axis)
591 592 593
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

L
Ligoml 已提交
594
    # calculate vector norm, where axis is int or list with only one integer
595
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
596 597
        if isinstance(p, str):
            if p == "fro":
L
Ligoml 已提交
598 599 600 601 602 603 604 605
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
606 607 608

            else:
                raise ValueError(
L
Ligoml 已提交
609 610
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
611
        elif isinstance(p, (int, float)):
L
Ligoml 已提交
612 613 614 615 616 617 618 619
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
620 621
        else:
            raise ValueError(
L
Ligoml 已提交
622 623 624 625 626
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
627 628
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
629 630 631
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
632 633
        elif p == 0:
            raise ValueError(
L
Ligoml 已提交
634 635 636 637
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
638
        else:
L
Ligoml 已提交
639 640 641
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
642 643
    else:
        raise ValueError(
L
Ligoml 已提交
644 645 646 647
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
648 649


650
def dist(x, y, p=2, name=None):
651
    r"""
S
swtkiwi 已提交
652

Z
Zhang Ting 已提交
653
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
654 655
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
680 681 682 683 684 685 686

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
687
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
688 689 690 691 692

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
693
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
694 695 696 697 698 699 700 701 702 703 704 705

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
706 707
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
708 709 710
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
711
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
712 713 714 715 716 717

    Examples:
        .. code-block:: python

            import paddle

718 719
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
720 721
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
722

723 724
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
725

726 727
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
728

729 730
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
731
    """
H
hong 已提交
732
    if in_dygraph_mode():
733
        return _C_ops.dist(x, y, p)
H
hong 已提交
734

Z
Zhang Ting 已提交
735 736 737 738 739 740 741 742 743
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
L
Ligoml 已提交
744 745 746
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
747
    return out
L
liuwei1031 已提交
748 749


750 751 752 753 754 755
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
756 757
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
776 777
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
778 779 780

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
781 782
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
783 784 785

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
786 787
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
788 789 790

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
791 792
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
793 794 795

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
796 797
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
798 799 800

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
801 802
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
803 804 805

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
806 807
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
808 809

            # compute conditional number when order of the norm is inf
810 811 812
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
813 814

            # compute conditional number when order of the norm is -inf
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

831
            a_cond_fro = paddle.linalg.cond(a, p='fro')
832 833 834 835 836 837 838 839 840 841 842 843
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
844
            b_cond_2 = paddle.linalg.cond(b, p=2)
845 846
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
847 848 849

    """

L
Ligoml 已提交
850
    def mat_norm(input, porder=1.0, axis=None):
851 852 853 854 855 856 857 858 859
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

860 861 862 863 864 865 866 867 868 869 870
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
L
Ligoml 已提交
871 872 873 874 875 876 877 878 879
            sum_out = _legacy_C_ops.reduce_sum(
                abs_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
880
            if porder == 1 or porder == np.inf:
L
Ligoml 已提交
881 882 883 884 885 886 887 888 889
                return _legacy_C_ops.reduce_max(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
890
            if porder == -1 or porder == -np.inf:
L
Ligoml 已提交
891 892 893 894 895 896 897 898 899
                return _legacy_C_ops.reduce_min(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
900 901 902
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
903 904
                dtype=block.input_dtype()
            )
905
            sum_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
906 907
                dtype=block.input_dtype()
            )
908
            out = block.create_variable_for_type_inference(
L
Ligoml 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
924
            if porder == 1 or porder == np.inf:
L
Ligoml 已提交
925 926 927 928 929 930 931 932 933 934
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
935
            if porder == -1 or porder == -np.inf:
L
Ligoml 已提交
936 937 938 939 940 941 942 943 944 945
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
946
            return out
947 948 949 950 951 952 953 954 955

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

956
        if in_dygraph_mode():
957
            pow_out = _C_ops.pow(input, porder)
958 959
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
L
Ligoml 已提交
960
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
961
        elif paddle.in_dynamic_mode():
962
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
L
Ligoml 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
            sum_out_1 = _legacy_C_ops.reduce_sum(
                pow_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            sum_out_2 = _legacy_C_ops.reduce_sum(
                sum_out_1,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1.0 / porder))
982 983 984

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
985 986
            dtype=block.input_dtype()
        )
987
        sum_out_1 = block.create_variable_for_type_inference(
L
Ligoml 已提交
988 989
            dtype=block.input_dtype()
        )
990
        sum_out_2 = block.create_variable_for_type_inference(
L
Ligoml 已提交
991 992
            dtype=block.input_dtype()
        )
993
        out = block.create_variable_for_type_inference(
L
Ligoml 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
            dtype=block.input_dtype()
        )
        block.append_op(
            type='pow',
            inputs={'X': input},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out_1},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': sum_out_1},
            outputs={'Out': sum_out_2},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out_2},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

1033
        if _non_static_mode():
1034
            if porder == "nuc":
1035
                if in_dygraph_mode():
1036
                    return _C_ops.sum(s, axis, None, keepdim)
1037
                else:
L
Ligoml 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046
                    return _legacy_C_ops.reduce_sum(
                        s,
                        'dim',
                        axis,
                        'keepdim',
                        keepdim,
                        'reduce_all',
                        reduce_all,
                    )
1047 1048 1049 1050
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
1051
                    return _C_ops.divide(max_out, min_out)
1052
                if porder == -2:
1053
                    return _C_ops.divide(min_out, max_out)
1054 1055

            else:
L
Ligoml 已提交
1056 1057 1058 1059 1060 1061
                max_out = _legacy_C_ops.reduce_max(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
                min_out = _legacy_C_ops.reduce_min(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
1062 1063
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
L
Ligoml 已提交
1064 1065
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False
                    )
1066 1067
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
L
Ligoml 已提交
1068 1069
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False
                    )
1070 1071 1072

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
L
Ligoml 已提交
1073 1074
            dtype=block.input_dtype()
        )
1075
        if porder == "nuc":
L
Ligoml 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            block.append_op(
                type='reduce_sum',
                inputs={'X': s},
                outputs={'Out': out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
1086 1087
            return out
        max_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
1088 1089
            dtype=block.input_dtype()
        )
1090
        min_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_max',
            inputs={'X': s},
            outputs={'Out': max_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_min',
            inputs={'X': s},
            outputs={'Out': min_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
1105
        if porder == 2:
L
Ligoml 已提交
1106 1107 1108 1109 1110 1111
            block.append_op(
                type='elementwise_div',
                inputs={'X': max_out, 'Y': min_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1112 1113
            return out
        if porder == -2:
L
Ligoml 已提交
1114 1115 1116 1117 1118 1119
            block.append_op(
                type='elementwise_div',
                inputs={'X': min_out, 'Y': max_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1120 1121 1122
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1123
        if paddle.in_dynamic_mode():
1124 1125 1126 1127 1128
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1129
        raise ValueError(
L
Ligoml 已提交
1130 1131 1132
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1146
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
L
Ligoml 已提交
1147 1148
                    x_inv, porder=p, axis=[-2]
                )
1149
            if p in (np.inf, -np.inf):
1150
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
L
Ligoml 已提交
1151 1152
                    x_inv, porder=p, axis=[-1]
                )
1153
        else:
L
Ligoml 已提交
1154 1155 1156 1157
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1158 1159 1160 1161 1162 1163
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
L
Ligoml 已提交
1164 1165 1166
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1167 1168


L
liuwei1031 已提交
1169 1170 1171
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1172

L
liuwei1031 已提交
1173
    .. note::
1174 1175
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1176 1177

    Parameters:
S
ShenLiang 已提交
1178 1179
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1180 1181
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1182
    Returns:
1183
        Tensor: the calculated result Tensor.
1184

L
liuwei1031 已提交
1185 1186 1187 1188 1189
    Examples:

    .. code-block:: python

        import paddle
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1200
        z = paddle.dot(x, y)
1201
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1202 1203

    """
1204 1205
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1206 1207
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1208

L
liuwei1031 已提交
1209
    op_type = 'dot'
1210

L
liuwei1031 已提交
1211 1212 1213
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

L
Ligoml 已提交
1214 1215 1216 1217 1218 1219
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
    )
    check_variable_and_dtype(
        y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
    )
L
liuwei1031 已提交
1220 1221 1222 1223 1224

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
L
Ligoml 已提交
1225 1226 1227 1228 1229 1230
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
    helper.append_op(
        type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
    )
L
liuwei1031 已提交
1231
    return out
1232 1233


Z
zhiboniu 已提交
1234 1235 1236 1237 1238
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
L
Ligoml 已提交
1239
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
L
Ligoml 已提交
1273 1274
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
L
Ligoml 已提交
1288 1289
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1290 1291 1292
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
L
Ligoml 已提交
1293 1294 1295 1296
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1297 1298 1299
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
L
Ligoml 已提交
1300 1301
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1302 1303 1304 1305 1306 1307 1308 1309
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
L
Ligoml 已提交
1310 1311 1312 1313 1314
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1315 1316 1317
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
L
Ligoml 已提交
1318 1319 1320 1321
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1322 1323 1324
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
L
Ligoml 已提交
1325 1326
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1357 1358
def t(input, name=None):
    """
1359 1360
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1361
    the paddle.transpose function which perm dimensions set 0 and 1.
1362

1363
    Args:
1364
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1365
        name(str, optional): The default value is None.  Normally there is no need for
1366 1367
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1368
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1369

1370
    Examples:
1371

1372 1373 1374
        .. code-block:: python
           :name: code-example
             import paddle
L
Ligoml 已提交
1375

1376
             # Example 1 (0-D tensor)
1377 1378
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
L
Ligoml 已提交
1379

1380
             # Example 2 (1-D tensor)
1381 1382 1383
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1384 1385

             # Example 3 (2-D tensor)
1386 1387 1388 1389 1390 1391 1392 1393
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1394

1395 1396 1397 1398 1399
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
L
Ligoml 已提交
1400 1401
            "tensor.transpose() instead." % len(input.shape)
        )
1402 1403 1404 1405 1406
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1407
        out = _C_ops.transpose(input, perm)
1408 1409 1410
        return out

    if _in_legacy_dygraph():
1411 1412 1413 1414
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1415
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1416 1417 1418
        return out

    check_variable_and_dtype(
L
Ligoml 已提交
1419 1420 1421 1422 1423
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose',
    )
1424 1425 1426 1427 1428 1429 1430

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
L
Ligoml 已提交
1431 1432 1433 1434 1435 1436
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': [1, 0]},
        )
1437
    return out
1438 1439


W
wanghuancoder 已提交
1440
def cross(x, y, axis=9, name=None):
1441
    """
1442
    Computes the cross product between two tensors along an axis.
1443

1444 1445
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1446

1447
    Args:
1448 1449
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1450
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1451
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1452 1453

    Returns:
1454
        Tensor. A Tensor with same data type as `x`.
1455

1456 1457
    Examples:
        .. code-block:: python
1458

1459
            import paddle
1460

Z
Zhou Wei 已提交
1461 1462 1463 1464 1465 1466
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1477
    """
J
Jiabin Yang 已提交
1478
    if in_dygraph_mode():
1479
        axis = K_DEFAULT_DIM if axis is None else axis
1480
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1481 1482 1483
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1484
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1485
            else:
1486
                return _legacy_C_ops.cross(x, y)
1487
        else:
J
Jiabin Yang 已提交
1488 1489 1490 1491 1492
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

L
Ligoml 已提交
1493 1494 1495 1496 1497 1498
            helper.append_op(
                type='cross',
                inputs={'X': x, 'Y': y},
                outputs={'Out': out},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1499
            return out
1500 1501


1502
def cholesky(x, upper=False, name=None):
1503
    r"""
G
Guo Sheng 已提交
1504
    Computes the Cholesky decomposition of one symmetric positive-definite
1505 1506
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1507 1508 1509 1510 1511 1512
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1513
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1514 1515 1516 1517 1518 1519 1520
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
1521
        Tensor: A Tensor with same shape and data type as `x`. It represents \
G
Guo Sheng 已提交
1522
            triangular matrices generated by Cholesky decomposition.
1523

G
Guo Sheng 已提交
1524 1525 1526 1527 1528
    Examples:
        .. code-block:: python

            import paddle

1529 1530 1531 1532
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1533
            out = paddle.linalg.cholesky(x, upper=False)
1534
            print(out)
G
Guo Sheng 已提交
1535
    """
H
hong 已提交
1536
    if in_dygraph_mode():
1537
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1538 1539

    if _in_legacy_dygraph():
1540
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1541

G
Guo Sheng 已提交
1542 1543 1544 1545
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
1546 1547 1548 1549 1550 1551
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
G
Guo Sheng 已提交
1552 1553 1554
    return out


1555 1556 1557 1558
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1559
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1560
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1561 1562

    Args:
1563 1564 1565 1566
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1567
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1568 1569
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1570
            the lower triangular of the matrix to compute.
1571 1572 1573 1574
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1592

1593
    """
1594 1595 1596 1597 1598 1599 1600
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
L
Ligoml 已提交
1601 1602 1603
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1604

1605 1606 1607 1608 1609 1610
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1611
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1612 1613

    if _in_legacy_dygraph():
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
L
Ligoml 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        return _legacy_C_ops.matrix_rank(
            x,
            tol_tensor,
            "tol",
            tol_attr,
            'hermitian',
            hermitian,
            'use_default_tol',
            use_default_tol,
        )
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
L
Ligoml 已提交
1661 1662 1663
    helper.append_op(
        type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
1664 1665 1666
    return out


1667 1668 1669 1670 1671 1672 1673 1674 1675
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1676 1677
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1678 1679 1680 1681
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1682
        Tensor: The product Tensor.
1683 1684

    Examples:
S
sunzhongkai588 已提交
1685 1686 1687
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1688

S
sunzhongkai588 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1698 1699 1700 1701 1702 1703
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1704

1705
    """
Y
yaoxuefeng 已提交
1706 1707 1708 1709
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
L
Ligoml 已提交
1710 1711 1712 1713
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1714 1715
    if x_shape[2] != y_shape[1]:
        raise ValueError(
L
Ligoml 已提交
1716 1717 1718 1719
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1720 1721
    if x_shape[0] != y_shape[0]:
        raise ValueError(
L
Ligoml 已提交
1722 1723 1724 1725
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1726

1727
    if in_dygraph_mode():
1728
        return _C_ops.bmm(x, y)
1729

Z
zhiboniu 已提交
1730
    if paddle.in_dynamic_mode():
1731
        return _legacy_C_ops.bmm(x, y)
1732 1733

    helper = LayerHelper('bmm', **locals())
1734 1735 1736
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1737 1738


1739
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1740
    """
1741
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1742 1743 1744
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1745
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1746
            should be float32, float64, int32, int64.
1747 1748 1749 1750
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1751 1752

    Returns:
1753
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1754

1755
    Examples:
Q
Qi Li 已提交
1756
        .. code-block:: python
1757

Q
Qi Li 已提交
1758
            import paddle
1759

1760
            inputs = paddle.to_tensor([1, 2, 1])
1761 1762
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1763
    """
H
hong 已提交
1764
    if in_dygraph_mode():
1765
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1766 1767

    if _in_legacy_dygraph():
L
Ligoml 已提交
1768 1769 1770
        return _legacy_C_ops.histogram(
            input, "bins", bins, "min", min, "max", max
        )
Q
Qi Li 已提交
1771 1772

    helper = LayerHelper('histogram', **locals())
L
Ligoml 已提交
1773 1774 1775
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
    )
Q
Qi Li 已提交
1776
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
L
Ligoml 已提交
1777 1778 1779 1780 1781 1782
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins, 'min': min, 'max': max},
    )
Q
Qi Li 已提交
1783
    return out
S
smallv0221 已提交
1784 1785 1786 1787


def bincount(x, weights=None, minlength=0, name=None):
    """
L
Ligoml 已提交
1788
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

H
hong 已提交
1816
    if _non_static_mode():
1817
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1818 1819 1820 1821 1822 1823

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
L
Ligoml 已提交
1824 1825 1826 1827 1828 1829
        check_variable_and_dtype(
            weights,
            'Weights',
            ['int32', 'int64', 'float32', 'float64'],
            'bincount',
        )
S
smallv0221 已提交
1830 1831 1832
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
1833 1834 1835 1836 1837 1838
    helper.append_op(
        type='bincount',
        inputs={'X': x, 'Weights': weights},
        outputs={'Out': out},
        attrs={'minlength': minlength},
    )
S
smallv0221 已提交
1839
    return out
1840 1841 1842 1843 1844 1845 1846


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1847
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1848
            should be one of float32, float64.
F
furnace 已提交
1849
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1865 1866
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1867
            out = paddle.mv(x, vec)
1868 1869 1870
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1871
    """
J
Jiabin Yang 已提交
1872
    if in_dygraph_mode():
1873
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1874 1875
    else:
        if _in_legacy_dygraph():
1876
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1877 1878
            return out
        else:
1879

J
Jiabin Yang 已提交
1880 1881 1882
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
L
Ligoml 已提交
1883 1884 1885
                    check_variable_and_dtype(
                        val, name, ['float32', 'float64'], 'mv'
                    )
J
Jiabin Yang 已提交
1886 1887 1888 1889
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
L
Ligoml 已提交
1890 1891 1892 1893
                        "x should be 2-dimensional. But received x's dimention: {}".format(
                            x_shape
                        )
                    )
J
Jiabin Yang 已提交
1894 1895
                if len(vec_shape) != 1:
                    raise ValueError(
L
Ligoml 已提交
1896 1897 1898 1899
                        "vec should be 1-dimensional. But received vec's dimention: {}".format(
                            vec_shape
                        )
                    )
J
Jiabin Yang 已提交
1900 1901 1902 1903 1904

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
1905 1906 1907
            helper.append_op(
                type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
            )
J
Jiabin Yang 已提交
1908
            return out
1909 1910


1911
def det(x, name=None):
H
huangxu96 已提交
1912 1913 1914 1915 1916 1917 1918 1919
    """
    Calculates determinant value of a square matrix or batches of square matrices.
    Args:
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size
                    `(*, n, n)` where `*` is one or more batch dimensions.
    Returns:
        y (Tensor):the determinant value of a square matrix or batches of square matrices.

1920
    Examples:
H
huangxu96 已提交
1921 1922 1923 1924 1925 1926
        .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1927
        A = paddle.linalg.det(x)
H
huangxu96 已提交
1928 1929

        print(A)
1930

H
huangxu96 已提交
1931 1932
        # [ 0.02547996,  2.52317095, -6.15900707])

1933

H
huangxu96 已提交
1934
    """
C
chentianyu03 已提交
1935
    if in_dygraph_mode():
1936
        return _C_ops.det(x)
C
chentianyu03 已提交
1937 1938

    if _in_legacy_dygraph():
1939
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1940 1941 1942 1943

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
L
Ligoml 已提交
1944 1945 1946 1947
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1948

L
Ligoml 已提交
1949 1950 1951 1952 1953 1954
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
1955 1956 1957
    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
1958 1959 1960
    helper.append_op(
        type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
1961 1962 1963
    return out


1964
def slogdet(x, name=None):
H
huangxu96 已提交
1965 1966 1967
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1968

H
huangxu96 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1980
    Examples:
H
huangxu96 已提交
1981 1982 1983 1984 1985 1986
    .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1987
        A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1988 1989

        print(A)
1990

H
huangxu96 已提交
1991 1992 1993 1994
        # [[ 1.        ,  1.        , -1.        ],
        # [-0.98610914, -0.43010661, -0.10872950]])

    """
1995
    if in_dygraph_mode():
1996
        return _C_ops.slogdet(x)
1997 1998

    elif paddle.in_dynamic_mode():
1999
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
2000 2001 2002 2003

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
L
Ligoml 已提交
2004 2005 2006 2007
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
2008

L
Ligoml 已提交
2009 2010 2011 2012 2013 2014
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
2015 2016 2017
    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
2018 2019 2020
    helper.append_op(
        type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
2021 2022 2023
    return out


2024 2025
def svd(x, full_matrices=False, name=None):
    r"""
2026 2027 2028 2029 2030
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
2031 2032
        X = U * diag(S) * VT

2033 2034
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
2035
            where `...` is zero or more batch dimensions. N and M can be arbitraty
2036 2037 2038 2039
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
2040
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
2041
            If full_matrices = False, svd op will use a economic method to store U and V.
2042
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
2043
        name (str, optional): Name for the operation (optional, default is None).
2044
            For more information, please refer to :ref:`api_guide_Name`.
2045 2046

    Returns:
2047
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
2048

2049 2050 2051 2052
    Examples:
        .. code-block:: python

            import paddle
2053 2054 2055

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
2056
            u, s, vh = paddle.linalg.svd(x)
2057 2058 2059 2060 2061
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

2062
            print (s)
2063
            #S = [8.14753743, 0.78589688]
2064
            print (vh)
2065 2066
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
2067

2068
            # one can verify : U * S * VT == X
2069
            #                  U * UH == I
2070
            #                  V * VH == I
2071
    """
2072
    if in_dygraph_mode():
2073
        return _C_ops.svd(x, full_matrices)
2074
    if _in_legacy_dygraph():
2075
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
L
Ligoml 已提交
2087
        outputs={'U': u, 'VH': vh, 'S': s},
2088 2089
        attrs=attrs,
    )
2090 2091 2092
    return u, s, vh


2093 2094 2095
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
2096

2097 2098 2099 2100 2101
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2102

2103 2104 2105 2106
    Specifically,

    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power
    of `n`.
2107

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to
    the power of `abs(n)`.

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2118
        name (str, optional): Name for the operation (optional, default is None).
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2133
            print(paddle.linalg.matrix_power(x, 2))
2134 2135 2136 2137
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2138
            print(paddle.linalg.matrix_power(x, 0))
2139 2140 2141 2142
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2143
            print(paddle.linalg.matrix_power(x, -2))
2144 2145 2146 2147
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2148
    if in_dygraph_mode():
2149
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2150 2151

    if _in_legacy_dygraph():
2152
        return _legacy_C_ops.matrix_power(x, "n", n)
2153 2154 2155 2156 2157

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
2158 2159 2160 2161 2162 2163
    helper.append_op(
        type='matrix_power',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'n': n},
    )
2164
    return out
2165 2166


2167 2168 2169 2170 2171 2172 2173
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
L
Ligoml 已提交
2174 2175
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2176
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
L
Ligoml 已提交
2177
            If mode = "reduced", qr op will return reduced Q and R matrices,
2178
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
L
Ligoml 已提交
2179
            If mode = "complete", qr op will return complete Q and R matrices,
2180 2181 2182 2183 2184
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
2185

2186
    Returns:
L
Ligoml 已提交
2187
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2188
        If mode = "r", qr will return a tensor which represents R.
L
Ligoml 已提交
2189 2190

    Examples:
2191 2192
        .. code-block:: python

L
Ligoml 已提交
2193
            import paddle
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
L
Ligoml 已提交
2206 2207

            # one can verify : X = Q * R ;
2208
    """
Y
Yulong Ao 已提交
2209
    if in_dygraph_mode():
2210
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2211 2212 2213 2214 2215
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2216
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
L
Ligoml 已提交
2228 2229 2230
    helper.append_op(
        type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
    )
2231 2232 2233 2234 2235 2236
    if mode == "r":
        return r
    else:
        return q, r


2237 2238
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
L
Ligoml 已提交
2239
    Computes the LU factorization of an N-D(N>=2) matrix x.
2240

L
Ligoml 已提交
2241
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])
    # return ones

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
2261

2262 2263 2264
    Returns:
        factorization (Tensor): LU matrix, the factorization of input X.

L
Ligoml 已提交
2265 2266
        pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
                    intermediate transpositions of rows. The final permutation `perm` could be
2267 2268
                    reconstructed by this, details refer to upper example.

L
Ligoml 已提交
2269 2270
        infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2))
                    where non-zero values indicate whether factorization for the matrix or each minibatch
2271 2272
                    has succeeded or failed.

L
Ligoml 已提交
2273 2274

    Examples:
2275 2276
        .. code-block:: python

L
Ligoml 已提交
2277
            import paddle
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
L
Ligoml 已提交
2293

2294 2295 2296 2297 2298 2299
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
L
Ligoml 已提交
2300
            # [1., 0., 0.]]),
2301 2302 2303 2304
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
L
Ligoml 已提交
2305
            # [0.60000000, 0.50000000]]),
2306 2307 2308 2309 2310
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

L
Ligoml 已提交
2311 2312

            # one can verify : X = P @ L @ U ;
2313
    """
L
Lin Manhui 已提交
2314 2315

    if in_dygraph_mode():
2316
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2317
    elif paddle.in_dynamic_mode():
2318
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2319 2320 2321 2322 2323 2324 2325 2326
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
L
Ligoml 已提交
2327 2328 2329 2330 2331 2332
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2333 2334 2335 2336 2337 2338 2339 2340
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
L
Ligoml 已提交
2341
    Unpack L U and P to single matrix tensor .
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
2361

2362 2363 2364 2365 2366 2367 2368
    Returns:
        P (Tensor): Permutation matrix P of lu factorization.

        L (Tensor): The lower triangular matrix tensor of lu factorization.

        U (Tensor): The upper triangular matrix tensor of lu factorization.

L
Ligoml 已提交
2369 2370

    Examples:
2371 2372
        .. code-block:: python

L
Ligoml 已提交
2373
            import paddle
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
L
Ligoml 已提交
2389

2390 2391 2392 2393 2394 2395
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
L
Ligoml 已提交
2396
            # [1., 0., 0.]]),
2397 2398 2399 2400
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
L
Ligoml 已提交
2401
            # [0.60000000, 0.50000000]]),
2402 2403 2404 2405 2406
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

L
Ligoml 已提交
2407
            # one can verify : X = P @ L @ U ;
2408 2409
    """

2410
    if in_dygraph_mode():
2411
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2412 2413
        return P, L, U

Z
zhiboniu 已提交
2414
    if paddle.in_dynamic_mode():
L
Ligoml 已提交
2415 2416 2417
        P, L, U = _legacy_C_ops.lu_unpack(
            x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots
        )
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
L
Ligoml 已提交
2429 2430 2431 2432 2433 2434
    helper.append_op(
        type='lu_unpack',
        inputs={'X': x, 'Pivots': y},
        outputs={'Pmat': p, 'L': l, 'U': u},
        attrs=attrs,
    )
2435 2436 2437
    return p, l, u


L
Lijunhui 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
def eig(x, name=None):
    """
    This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.

    .. note::
        If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        This API is only supported on CPU device.
        The output datatype is always complex for both real and complex input.

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
L
Ligoml 已提交
2452
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.device.set_device("cpu")

            x_data = np.array([[1.6707249, 7.2249975, 6.5045543],
                               [9.956216,  8.749598,  6.066444 ],
                               [4.4251957, 1.7983172, 0.370647 ]]).astype("float32")
            x = paddle.to_tensor(x_data)
            w, v = paddle.linalg.eig(x)
            print(w)
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

            print(v)
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2486
    if in_dygraph_mode():
2487
        return _C_ops.eig(x)
2488
    elif paddle.in_dynamic_mode():
2489
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2490 2491
        return w, v

L
Ligoml 已提交
2492 2493 2494
    check_variable_and_dtype(
        x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
    )
L
Lijunhui 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2507 2508 2509
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2510 2511 2512

    Warning:
        The gradient kernel of this operator does not yet developed.
2513 2514 2515 2516
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2517
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2518
            Its data type should be float32, float64, complex64, or complex128.
2519
        name (str, optional): Name for the operation (optional, default is None).
2520
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
2521

2522
    Returns:
2523
        Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
2524 2525 2526 2527 2528 2529
            The eigenvalues are complex-valued even when `x` is real.

    Examples:
        .. code-block:: python

            import paddle
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

L
Ligoml 已提交
2543 2544 2545
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals'
    )
2546 2547 2548 2549

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
L
Ligoml 已提交
2550 2551 2552 2553
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2554 2555 2556

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
L
Ligoml 已提交
2557 2558 2559 2560
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2561

R
Ruibiao Chen 已提交
2562
    if in_dygraph_mode():
2563
        return _C_ops.eigvals(x)
2564 2565
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2566 2567 2568 2569 2570 2571 2572

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2573 2574 2575 2576
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2577
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle
        # A * B
2613 2614
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2615
        out = paddle.linalg.multi_dot([A, B])
2616
        print(out.shape)
2617 2618
        # [3, 5]
        # A * B * C
2619 2620 2621
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2622
        out = paddle.linalg.multi_dot([A, B, C])
2623
        print(out.shape)
2624 2625
        # [10, 7]
    """
2626
    if _in_legacy_dygraph():
2627
        return _legacy_C_ops.multi_dot(x)
2628
    if in_dygraph_mode():
2629
        return _C_ops.multi_dot(x)
2630 2631 2632

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
L
Ligoml 已提交
2633 2634 2635 2636 2637 2638
        check_variable_and_dtype(
            item,
            'x[' + str(id) + ']',
            ['float16', 'float32', 'float64'],
            'multi_dot',
        )
2639 2640
        if item.dtype != x[0].dtype:
            raise TypeError(
L
Ligoml 已提交
2641 2642
                "All the Tensors in the input must have the same data type."
            )
2643 2644 2645 2646 2647 2648

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2649 2650 2651 2652


def eigh(x, UPLO='L', name=None):
    """
2653
    Compute the eigenvalues and eigenvectors of a
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op.
        out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
2677
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2678 2679 2680 2681 2682 2683 2684
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2685
    if in_dygraph_mode():
2686
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2687 2688

    if _in_legacy_dygraph():
2689
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2690 2691 2692 2693 2694 2695

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
L
Ligoml 已提交
2696 2697
                "length of Input(input) is %s." % len(x.shape)
            )
2698 2699
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
L
Ligoml 已提交
2700 2701 2702 2703
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
2704
        if UPLO != 'L' and UPLO != 'U':
2705
            raise ValueError(
L
Ligoml 已提交
2706 2707
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
2708 2709 2710 2711

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
L
Ligoml 已提交
2712 2713 2714
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh'
    )
2715 2716 2717 2718

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
2719 2720 2721 2722 2723 2724
    helper.append_op(
        type='eigh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO},
    )
2725
    return out_value, out_vector
A
andyjpaddle 已提交
2726 2727 2728 2729


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2730
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2741

A
andyjpaddle 已提交
2742 2743 2744
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2745 2746 2747
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2748 2749 2750 2751
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2752
        rcond(Tensor, optional): the tolerance value to determine
2753
            when is a singular value zero. Default:1e-15.
2754 2755

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2756
            if complex or symmetric if real. Default: False.
2757 2758

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2759
            the layer will be named automatically.
2760

A
andyjpaddle 已提交
2761
    Returns:
2762
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2763
        pseudo inverse of x. Its shape should be (*, n, m).
2764

A
andyjpaddle 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2791 2792 2793
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2794 2795
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2796 2797 2798 2799
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2800

2801 2802 2803 2804 2805 2806
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2807
            st = _C_ops.unsqueeze(singular, [-2])
2808 2809 2810

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2811
            v = _C_ops.transpose(vt, perm)
2812 2813

            out_1 = v * st
2814
            out_2 = _C_ops.matmul(out_1, u, False, True)
2815 2816 2817
            return out_2
        else:
            # combine eigh and matmul op
2818
            s, u = _C_ops.eigh(x, 'UPLO')
2819
            s_abs = paddle.abs(s)
2820
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2832
            st = _C_ops.unsqueeze(singular, [-2])
2833 2834

            out_1 = u * st
2835 2836
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2837 2838 2839
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2840 2841
        if not hermitian:
            # combine svd and matmul op
2842
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
L
Ligoml 已提交
2843 2844 2845
            max_singular_val = _legacy_C_ops.reduce_max(
                s, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2846 2847 2848 2849 2850 2851
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2852 2853 2854 2855 2856
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2857
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2858 2859 2860

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2861
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2862 2863

            out_1 = v * st
2864
            if in_dygraph_mode():
2865
                out_2 = _C_ops.matmul(out_1, u, False, True)
2866
            else:
L
Ligoml 已提交
2867 2868 2869
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2870 2871 2872
            return out_2
        else:
            # combine eigh and matmul op
2873
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2874
            s_abs = paddle.abs(s)
L
Ligoml 已提交
2875 2876 2877
            max_singular_val = _legacy_C_ops.reduce_max(
                s_abs, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2878 2879 2880 2881 2882 2883
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2884 2885 2886 2887 2888
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2889
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2890 2891

            out_1 = u * st
2892
            u_conj = _legacy_C_ops.conj(u)
2893
            if in_dygraph_mode():
2894
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2895
            else:
L
Ligoml 已提交
2896 2897 2898
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u_conj, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
L
Ligoml 已提交
2912
                outputs={'U': u, 'VH': vt, 'S': s},
2913 2914
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2915 2916

            max_singular_val = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
2917 2918 2919 2920 2921 2922
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2923

2924
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2925 2926
            cutoff = rcond * max_singular_val
            y = float('inf')
2927
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2928 2929

            condition = s > cutoff
2930 2931 2932 2933 2934
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2935 2936 2937

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
L
Ligoml 已提交
2938 2939 2940 2941 2942 2943
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2944 2945 2946 2947 2948

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
2949 2950 2951 2952 2953 2954
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2955 2956

            out_1 = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
2957 2958 2959 2960 2961 2962
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2963 2964 2965 2966 2967
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
L
Ligoml 已提交
2968
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2969
                outputs={'Out': out_2},
L
Ligoml 已提交
2970
                attrs={'trans_x': False, 'trans_y': True},
2971
            )
A
andyjpaddle 已提交
2972 2973 2974 2975 2976
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
L
Ligoml 已提交
2977 2978 2979 2980 2981
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
L
Ligoml 已提交
2992 2993 2994 2995 2996 2997
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2998
            s_abs = helper.create_variable_for_type_inference(s_type)
L
Ligoml 已提交
2999 3000 3001
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
3002
            max_singular_val = helper.create_variable_for_type_inference(s_type)
L
Ligoml 已提交
3003 3004 3005 3006 3007 3008
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
3009

3010
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
3011 3012
            cutoff = rcond * max_singular_val
            y = float('inf')
3013
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
3014 3015

            condition = s_abs > cutoff
3016 3017 3018 3019 3020
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
3021 3022 3023

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
L
Ligoml 已提交
3024 3025 3026 3027 3028 3029
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
3030 3031

            out_1 = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3032 3033 3034 3035 3036 3037
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3038 3039 3040
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3041 3042 3043
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
3044 3045 3046 3047

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
L
Ligoml 已提交
3048
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
3049
                outputs={'Out': out_2},
L
Ligoml 已提交
3050
                attrs={'trans_x': False, 'trans_y': True},
3051
            )
A
andyjpaddle 已提交
3052
            return out_2
W
Weilong Wu 已提交
3053 3054 3055 3056 3057 3058 3059


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
3060

W
Weilong Wu 已提交
3061 3062 3063 3064
    .. math::
        Out = X^-1 * Y
    Specifically,
    - This system of linear equations has one solution if and only if input 'X' is invertible.
3065

W
Weilong Wu 已提交
3066 3067 3068 3069 3070
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3071
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3072
            For more information, please refer to :ref:`api_guide_Name`.
3073

W
Weilong Wu 已提交
3074
    Returns:
3075
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3076
        Its data type should be the same as that of `x`.
3077

W
Weilong Wu 已提交
3078 3079
    Examples:
    .. code-block:: python
3080

W
Weilong Wu 已提交
3081 3082 3083
        # a square system of linear equations:
        # 2*X0 + X1 = 9
        # X0 + 2*X1 = 8
3084

W
Weilong Wu 已提交
3085 3086
        import paddle
        import numpy as np
3087

W
Weilong Wu 已提交
3088 3089 3090 3091 3092
        np_x = np.array([[3, 1],[1, 2]])
        np_y = np.array([9, 8])
        x = paddle.to_tensor(np_x, dtype="float64")
        y = paddle.to_tensor(np_y, dtype="float64")
        out = paddle.linalg.solve(x, y)
3093

W
Weilong Wu 已提交
3094 3095 3096
        print(out)
        # [2., 3.])
    """
3097
    if in_dygraph_mode():
3098
        return _C_ops.solve(x, y)
3099 3100

    if _in_legacy_dygraph():
3101
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
3102 3103 3104 3105 3106 3107 3108

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
3109 3110 3111
    helper.append_op(
        type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
    )
W
Weilong Wu 已提交
3112
    return out
3113 3114


L
Ligoml 已提交
3115 3116 3117
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3118
    r"""
3119 3120
        Computes the solution of a system of equations with a triangular coefficient matrix `x` and
        multiple right-hand sides `y` .
3121

3122 3123
        Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
        is also batches.
3124

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
        Args:
            x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
                more batch dimensions. Its data type should be float32 or float64.
            y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
                zero or more batch dimensions. Its data type should be float32 or float64.
            upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
                system of equations. Default: True.
            transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
            unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
                to be 1 and not referenced from `x` . Default: False.
            name(str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

        Returns:
            Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

        Examples:
        .. code-block:: python
3143

3144 3145 3146 3147
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3148

3149 3150 3151 3152 3153 3154
    <<<<<<< HEAD
            import paddle
            import numpy as np
    =======
                import paddle
    >>>>>>> 912be4f897 (fix numpy issue in codeblock examples for operators under python/paddle/tensor folder (#46765))
3155

3156 3157 3158 3159 3160
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3161

3162 3163
            print(out)
            # [7, -2, -5]
3164
    """
H
hong 已提交
3165
    if in_dygraph_mode():
3166
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3167

Z
zhiboniu 已提交
3168
    if paddle.in_dynamic_mode():
L
Ligoml 已提交
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
        return _legacy_C_ops.triangular_solve(
            x,
            y,
            'upper',
            upper,
            'transpose',
            transpose,
            'unitriangular',
            unitriangular,
        )
3179 3180 3181 3182 3183 3184 3185

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
    helper.append_op(
        type='triangular_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={
            'upper': upper,
            'transpose': transpose,
            'unitriangular': unitriangular,
        },
    )
3196 3197 3198
    return out


Z
zhiboniu 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
L
Ligoml 已提交
3209
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
    .. code-block:: python

        import paddle

L
Ligoml 已提交
3223
        u = paddle.to_tensor([[1, 1, 1],
Z
zhiboniu 已提交
3224 3225 3226 3227 3228 3229 3230 3231
                                [0, 2, 1],
                                [0, 0,-1]], dtype="float64")
        b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.cholesky_solve(b, u, upper=True)

        print(out)
        # [-2.5, -7, 9.5]
    """
H
hong 已提交
3232
    if in_dygraph_mode():
3233
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3234 3235

    if _in_legacy_dygraph():
3236
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3237 3238 3239 3240 3241 3242

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
3243 3244 3245 3246 3247 3248
    helper.append_op(
        type='cholesky_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
Z
zhiboniu 已提交
3249 3250 3251
    return out


3252 3253
def eigvalsh(x, UPLO='L', name=None):
    """
L
Ligoml 已提交
3254
    Computes the eigenvalues of a
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3272
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3273 3274
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3275 3276
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3277
    """
3278
    if in_dygraph_mode():
3279
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3280 3281 3282
        return values

    elif paddle.in_dynamic_mode():
3283
        is_test = x.stop_gradient
3284
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3285 3286 3287 3288 3289 3290 3291
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
L
Ligoml 已提交
3292 3293
                "length of Input(input) is %s." % len(x.shape)
            )
3294 3295
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
L
Ligoml 已提交
3296 3297 3298 3299
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
3300
        if UPLO != 'L' and UPLO != 'U':
3301
            raise ValueError(
L
Ligoml 已提交
3302 3303
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
3304 3305 3306 3307

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
L
Ligoml 已提交
3308 3309 3310 3311 3312 3313
    check_variable_and_dtype(
        x,
        'dtype',
        ['float32', 'float64', 'complex64', 'complex128'],
        'eigvalsh',
    )
3314 3315 3316 3317 3318

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
L
Ligoml 已提交
3319 3320 3321 3322 3323 3324
    helper.append_op(
        type='eigvalsh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO, 'is_test': is_test},
    )
3325
    return out_value
3326 3327


3328 3329 3330 3331 3332 3333 3334 3335
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
L
Ligoml 已提交
3336
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3337
            should be one of float32, float64.
L
Ligoml 已提交
3338 3339
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3340
            machine precision of x_dtype.
L
Ligoml 已提交
3341 3342 3343
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3344
            for CUDA inputs.
L
Ligoml 已提交
3345
        name(str, optional): The default value is None. Normally there is no need for user to set
3346 3347 3348
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3349 3350 3351 3352 3353 3354 3355
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3388 3389 3390
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
L
Ligoml 已提交
3391 3392 3393 3394
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3395 3396 3397 3398
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
L
Ligoml 已提交
3399 3400 3401 3402
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3403 3404 3405 3406
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3420
    if _non_static_mode():
3421
        if in_dygraph_mode():
3422
            solution, residuals, rank, singular_values = _C_ops.lstsq(
L
Ligoml 已提交
3423 3424
                x, y, rcond, driver
            )
3425
        else:
3426
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
L
Ligoml 已提交
3427 3428
                x, y, 'rcond', rcond, 'driver', driver
            )
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
L
Ligoml 已提交
3439 3440 3441 3442 3443 3444
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
    check_variable_and_dtype(
        y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
3445 3446 3447 3448 3449 3450

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    helper.append_op(
        type='lstsq',
        inputs={'X': x, 'Y': y},
        outputs={
            'Solution': solution,
            'Residuals': residuals,
            'Rank': rank,
            'SingularValues': singular_values,
        },
        attrs={'rcond': rcond, 'driver': driver},
    )
3462 3463 3464 3465 3466 3467 3468 3469

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3470 3471 3472 3473


def corrcoef(x, rowvar=True, name=None):
    """
L
Ligoml 已提交
3474

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3498

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
L
Ligoml 已提交
3513 3514
            "length of Input(input) is %s." % len(x.shape)
        )
3515 3516 3517
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
L
Ligoml 已提交
3518
    if c.ndim == 0:
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
L
Ligoml 已提交
3533 3534 3535
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3536 3537 3538 3539
    else:
        c = paddle.clip(c, -1, 1)

    return c