linalg.py 125.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
L
Ligoml 已提交
17 18 19 20 21 22 23 24 25 26 27
from ..framework import (
    _varbase_creator,
    _dygraph_tracer,
    in_dygraph_mode,
    _non_static_mode,
)
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
Z
zhiboniu 已提交
28
from ..static import Variable
29 30
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
31 32 33
from .math import multiply, add
from .logic import logical_not
from .creation import full
34

A
andyjpaddle 已提交
35
import paddle
36
import warnings
37 38
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
39
from paddle import _C_ops, _legacy_C_ops
40

41 42
__all__ = []

43 44 45
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
98
        return _C_ops.transpose(x, perm)
99 100
    else:
        if _in_legacy_dygraph():
101
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
102 103
            return out

L
Ligoml 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'transpose',
    )
119 120 121 122 123 124 125 126
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
L
Ligoml 已提交
127 128
            "the length of Input(perm) is %s." % (len(x.shape), len(perm))
        )
129 130 131 132 133
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
L
Ligoml 已提交
134 135
                "dimension %d." % (idx, perm[idx], len(x.shape))
            )
136 137 138 139

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
L
Ligoml 已提交
140 141 142 143 144 145
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out], 'XShape': [x_shape]},
        attrs={'axis': perm},
    )
146 147 148
    return out


S
ShenLiang 已提交
149
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
150
    """
151 152
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
153
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
154

S
ShenLiang 已提交
155 156
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
157 158 159 160 161

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
162 163
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
164 165 166 167 168 169 170 171
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

172 173
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
174
      After the matrix multiply, the prepended dimension is removed.
175 176

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
177 178
      the matrix-vector product is obtained.

179 180 181 182 183 184 185 186 187
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
188
      out will be a (j, k, n, p) tensor.
189 190

    Args:
S
ShenLiang 已提交
191 192
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
193 194 195 196 197 198
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
199
        Tensor: The output Tensor.
200 201 202

    Examples:

C
Chen Long 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
241 242

    """
243
    if in_dygraph_mode():
244
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
245 246 247

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
248
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
249 250
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

251
    attrs = {
S
ShenLiang 已提交
252 253
        'trans_x': transpose_x,
        'trans_y': transpose_y,
254 255 256 257 258
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
259
            check_variable_and_dtype(
L
Ligoml 已提交
260 261
                val,
                name,
262
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
L
Ligoml 已提交
263 264
                'matmul',
            )
265 266 267

    __check_input(x, y)

S
ShenLiang 已提交
268
    helper = LayerHelper('matmul_v2', **locals())
269
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
270 271 272 273 274 275
    helper.append_op(
        type='matmul_v2',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
276
    return out
Z
Zhang Ting 已提交
277 278


myq406450149's avatar
myq406450149 已提交
279
def norm(x, p='fro', axis=None, keepdim=False, name=None):
280
    """
S
swtkiwi 已提交
281

282 283 284
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

285 286 287 288 289 290
    .. note::
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

291
    Args:
myq406450149's avatar
myq406450149 已提交
292
        x (Tensor): The input tensor could be N-D tensor, and the input data
293
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
294
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
295
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
296
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
297 298
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
299
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
300
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
301
            Default value is `None`.
302 303 304 305 306 307 308 309
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
310
        Tensor: results of norm operation on the specified axis of input tensor,
311
        it's data type is the same as input's Tensor.
312

313 314
    Examples:
        .. code-block:: python
315

316
            import paddle
myq406450149's avatar
myq406450149 已提交
317 318 319 320 321 322 323 324
            import numpy as np
            shape=[2, 3, 4]
            np_input = np.arange(24).astype('float32') - 12
            np_input = np_input.reshape(shape)
            x = paddle.to_tensor(np_input)
            #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
            # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]

325
            # compute frobenius norm along last two dimensions.
326
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
myq406450149's avatar
myq406450149 已提交
327 328
            # out_fro.numpy() [17.435596 16.911535 16.7332   16.911535]

329
            # compute 2-order vector norm along last dimension.
330
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
myq406450149's avatar
myq406450149 已提交
331 332 333 334
            #out_pnorm.numpy(): [[21.118711  13.190906   5.477226]
            #                    [ 3.7416575 11.224972  19.131126]]

            # compute 2-order  norm along [0,1] dimension.
335
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
myq406450149's avatar
myq406450149 已提交
336 337 338
            #out_pnorm.numpy(): [17.435596 16.911535 16.7332   16.911535]

            # compute inf-order  norm
339
            out_pnorm = paddle.linalg.norm(x, p=np.inf)
myq406450149's avatar
myq406450149 已提交
340
            #out_pnorm.numpy()  = [12.]
341
            out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
342 343 344
            #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]

            # compute -inf-order  norm
345
            out_pnorm = paddle.linalg.norm(x, p=-np.inf)
myq406450149's avatar
myq406450149 已提交
346
            #out_pnorm.numpy(): [0.]
347
            out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0)
myq406450149's avatar
myq406450149 已提交
348
            #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
349 350
    """

myq406450149's avatar
myq406450149 已提交
351
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
352 353 354 355 356 357 358 359 360 361 362
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
363 364 365

        if in_dygraph_mode():
            if dim is None:
366 367
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
368
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
369
            if dim is None:
L
Ligoml 已提交
370 371 372 373 374 375
                return _legacy_C_ops.frobenius_norm(
                    input, 'keep_dim', keepdim, 'reduce_all', True
                )
            return _legacy_C_ops.frobenius_norm(
                input, 'dim', dim, 'keep_dim', keepdim, 'reduce_all', False
            )
myq406450149's avatar
myq406450149 已提交
376 377
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
378
            attrs['reduce_all'] = True
L
Ligoml 已提交
379 380 381
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'frobenius_norm'
        )
382 383

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
384
        out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
385 386
            dtype=helper.input_dtype()
        )
387

L
Ligoml 已提交
388 389 390 391 392 393
        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
394 395
        return out

L
Ligoml 已提交
396 397 398
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
399 400 401 402 403 404 405 406
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
407
        if in_dygraph_mode():
L
Ligoml 已提交
408 409
            if axis is None:
                axis = -1
410
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
411 412

        if _in_legacy_dygraph():
L
Ligoml 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425
            if axis is None:
                axis = -1
            return _legacy_C_ops.p_norm(
                input,
                'porder',
                porder,
                'axis',
                axis,
                'keepdim',
                keepdim,
                'asvector',
                asvector,
            )
426

427 428 429 430
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
L
Ligoml 已提交
431 432 433
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'p_norm'
        )
myq406450149's avatar
myq406450149 已提交
434

435 436 437 438
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
439
            'asvector': asvector,
440 441 442
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
443
        out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
444 445
            dtype=helper.input_dtype()
        )
446

L
Ligoml 已提交
447 448 449 450 451 452
        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
453 454
        return out

L
Ligoml 已提交
455 456 457
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
458
        if in_dygraph_mode():
459
            out = _C_ops.abs(input)
L
Ligoml 已提交
460 461 462 463 464
            reduce_all = (
                True
                if axis == None or axis == [] or asvector == True
                else False
            )
465 466 467 468
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
469
                return _C_ops.max(out, axis, keepdim)
470
            else:
471
                return _C_ops.min(out, axis, keepdim)
472

O
OccupyMars2025 已提交
473
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
474
        out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
475 476
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
477 478
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
479 480
            dtype=helper.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
481

L
Ligoml 已提交
482 483 484
        reduce_all = (
            True if axis == None or axis == [] or asvector == True else False
        )
myq406450149's avatar
myq406450149 已提交
485 486
        axis = axis if axis != None and axis != [] else [0]

L
Ligoml 已提交
487 488 489 490 491 492 493 494 495
        reduce_type = (
            'reduce_max' if porder == np.float64('inf') else 'reduce_min'
        )
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
myq406450149's avatar
myq406450149 已提交
496 497 498

        return reduce_out

L
Ligoml 已提交
499
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
500 501 502 503
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
504
        if in_dygraph_mode():
505 506 507
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
L
Ligoml 已提交
508
            out = _C_ops.pow(sum_out, float(1.0 / porder))
509 510
            return out

myq406450149's avatar
myq406450149 已提交
511 512
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
L
Ligoml 已提交
513 514
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
515
        abs_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
516 517 518 519 520
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
521
        pow_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
522 523
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
524

L
Ligoml 已提交
525 526 527 528 529 530
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
531
        sum_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
550 551
        return out

552 553 554
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
555
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
556 557
            else:
                raise ValueError(
L
Ligoml 已提交
558 559
                    "only valid string values are 'fro', found {}".format(p)
                )
560
        elif isinstance(p, (int, float)):
L
Ligoml 已提交
561 562 563 564 565 566 567 568
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
569
        else:
570
            raise ValueError(
L
Ligoml 已提交
571 572
                "only valid p type is string or float, found {}".format(type(p))
            )
573

myq406450149's avatar
myq406450149 已提交
574 575
    if isinstance(axis, tuple):
        axis = list(axis)
576 577 578
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

L
Ligoml 已提交
579
    # calculate vector norm, where axis is int or list with only one integer
580
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
581 582
        if isinstance(p, str):
            if p == "fro":
L
Ligoml 已提交
583 584 585 586 587 588 589 590
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
591 592 593

            else:
                raise ValueError(
L
Ligoml 已提交
594 595
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
596
        elif isinstance(p, (int, float)):
L
Ligoml 已提交
597 598 599 600 601 602 603 604
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
605 606
        else:
            raise ValueError(
L
Ligoml 已提交
607 608 609 610 611
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
612 613
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
614 615 616
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
617 618
        elif p == 0:
            raise ValueError(
L
Ligoml 已提交
619 620 621 622
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
623
        else:
L
Ligoml 已提交
624 625 626
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
627 628
    else:
        raise ValueError(
L
Ligoml 已提交
629 630 631 632
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
633 634


635
def dist(x, y, p=2, name=None):
636
    r"""
S
swtkiwi 已提交
637

Z
Zhang Ting 已提交
638
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
639 640
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
665 666 667 668 669 670 671

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
672
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
673 674 675 676 677

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
678
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
679 680 681 682 683 684 685 686 687 688 689 690

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
691 692
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
693 694 695
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
696
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
697 698 699 700 701 702 703

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

704 705 706 707
            x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")
            y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
708

709 710
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
711

712 713
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
714

715 716
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
717
    """
H
hong 已提交
718
    if in_dygraph_mode():
719
        return _C_ops.dist(x, y, p)
H
hong 已提交
720

Z
Zhang Ting 已提交
721 722 723 724 725 726 727 728 729
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
L
Ligoml 已提交
730 731 732
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
733
    return out
L
liuwei1031 已提交
734 735


736 737 738 739 740 741
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
742 743
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
798
            # a.numpy()
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

L
Ligoml 已提交
823
    def mat_norm(input, porder=1.0, axis=None):
824 825 826 827 828 829 830 831 832
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

833 834 835 836 837 838 839 840 841 842 843
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
L
Ligoml 已提交
844 845 846 847 848 849 850 851 852
            sum_out = _legacy_C_ops.reduce_sum(
                abs_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
853
            if porder == 1 or porder == np.inf:
L
Ligoml 已提交
854 855 856 857 858 859 860 861 862
                return _legacy_C_ops.reduce_max(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
863
            if porder == -1 or porder == -np.inf:
L
Ligoml 已提交
864 865 866 867 868 869 870 871 872
                return _legacy_C_ops.reduce_min(
                    sum_out,
                    'dim',
                    [-1],
                    'keepdim',
                    keepdim,
                    'reduce_all',
                    reduce_all,
                )
873 874 875
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
876 877
                dtype=block.input_dtype()
            )
878
            sum_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
879 880
                dtype=block.input_dtype()
            )
881
            out = block.create_variable_for_type_inference(
L
Ligoml 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
897
            if porder == 1 or porder == np.inf:
L
Ligoml 已提交
898 899 900 901 902 903 904 905 906 907
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
908
            if porder == -1 or porder == -np.inf:
L
Ligoml 已提交
909 910 911 912 913 914 915 916 917 918
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
                        'keep_dim': keepdim,
                        'reduce_all': reduce_all,
                    },
                )
919
            return out
920 921 922 923 924 925 926 927 928

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

929
        if in_dygraph_mode():
930
            pow_out = _C_ops.pow(input, porder)
931 932
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
L
Ligoml 已提交
933
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
934
        elif paddle.in_dynamic_mode():
935
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
L
Ligoml 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
            sum_out_1 = _legacy_C_ops.reduce_sum(
                pow_out,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            sum_out_2 = _legacy_C_ops.reduce_sum(
                sum_out_1,
                'dim',
                axis,
                'keepdim',
                keepdim,
                'reduce_all',
                reduce_all,
            )
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1.0 / porder))
955 956 957

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
958 959
            dtype=block.input_dtype()
        )
960
        sum_out_1 = block.create_variable_for_type_inference(
L
Ligoml 已提交
961 962
            dtype=block.input_dtype()
        )
963
        sum_out_2 = block.create_variable_for_type_inference(
L
Ligoml 已提交
964 965
            dtype=block.input_dtype()
        )
966
        out = block.create_variable_for_type_inference(
L
Ligoml 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
            dtype=block.input_dtype()
        )
        block.append_op(
            type='pow',
            inputs={'X': input},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out_1},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': sum_out_1},
            outputs={'Out': sum_out_2},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out_2},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

1006
        if _non_static_mode():
1007
            if porder == "nuc":
1008
                if in_dygraph_mode():
1009
                    return _C_ops.sum(s, axis, None, keepdim)
1010
                else:
L
Ligoml 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019
                    return _legacy_C_ops.reduce_sum(
                        s,
                        'dim',
                        axis,
                        'keepdim',
                        keepdim,
                        'reduce_all',
                        reduce_all,
                    )
1020 1021 1022 1023
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
1024
                    return _C_ops.divide(max_out, min_out)
1025
                if porder == -2:
1026
                    return _C_ops.divide(min_out, max_out)
1027 1028

            else:
L
Ligoml 已提交
1029 1030 1031 1032 1033 1034
                max_out = _legacy_C_ops.reduce_max(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
                min_out = _legacy_C_ops.reduce_min(
                    s, 'dim', axis, 'keepdim', keepdim, 'reduce_all', reduce_all
                )
1035 1036
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
L
Ligoml 已提交
1037 1038
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False
                    )
1039 1040
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
L
Ligoml 已提交
1041 1042
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False
                    )
1043 1044 1045

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
L
Ligoml 已提交
1046 1047
            dtype=block.input_dtype()
        )
1048
        if porder == "nuc":
L
Ligoml 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
            block.append_op(
                type='reduce_sum',
                inputs={'X': s},
                outputs={'Out': out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
1059 1060
            return out
        max_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
1061 1062
            dtype=block.input_dtype()
        )
1063
        min_out = block.create_variable_for_type_inference(
L
Ligoml 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_max',
            inputs={'X': s},
            outputs={'Out': max_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        block.append_op(
            type='reduce_min',
            inputs={'X': s},
            outputs={'Out': min_out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
1078
        if porder == 2:
L
Ligoml 已提交
1079 1080 1081 1082 1083 1084
            block.append_op(
                type='elementwise_div',
                inputs={'X': max_out, 'Y': min_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1085 1086
            return out
        if porder == -2:
L
Ligoml 已提交
1087 1088 1089 1090 1091 1092
            block.append_op(
                type='elementwise_div',
                inputs={'X': min_out, 'Y': max_out},
                outputs={'Out': out},
                attrs={'aixs': axis, 'use_mkldnn': False},
            )
1093 1094 1095
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1096
        if paddle.in_dynamic_mode():
1097 1098 1099 1100 1101
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1102
        raise ValueError(
L
Ligoml 已提交
1103 1104 1105
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1119
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
L
Ligoml 已提交
1120 1121
                    x_inv, porder=p, axis=[-2]
                )
1122
            if p in (np.inf, -np.inf):
1123
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
L
Ligoml 已提交
1124 1125
                    x_inv, porder=p, axis=[-1]
                )
1126
        else:
L
Ligoml 已提交
1127 1128 1129 1130
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1131 1132 1133 1134 1135 1136
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
L
Ligoml 已提交
1137 1138 1139
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1140 1141


L
liuwei1031 已提交
1142 1143 1144
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1145

L
liuwei1031 已提交
1146
    .. note::
1147 1148
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1149 1150

    Parameters:
S
ShenLiang 已提交
1151 1152
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1153 1154
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1155
    Returns:
1156
        Tensor: the calculated result Tensor.
1157

L
liuwei1031 已提交
1158 1159 1160 1161 1162 1163
    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
1164 1165 1166

        x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)
        y_data = np.random.uniform(1, 3, [10]).astype(np.float32)
S
ShenLiang 已提交
1167 1168
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
1169
        z = paddle.dot(x, y)
1170
        print(z)
L
liuwei1031 已提交
1171 1172

    """
1173 1174
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1175 1176
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1177

L
liuwei1031 已提交
1178
    op_type = 'dot'
1179

L
liuwei1031 已提交
1180 1181 1182
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

L
Ligoml 已提交
1183 1184 1185 1186 1187 1188
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
    )
    check_variable_and_dtype(
        y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
    )
L
liuwei1031 已提交
1189 1190 1191 1192 1193

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
L
Ligoml 已提交
1194 1195 1196 1197 1198 1199
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
    helper.append_op(
        type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
    )
L
liuwei1031 已提交
1200
    return out
1201 1202


Z
zhiboniu 已提交
1203 1204 1205 1206 1207
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
L
Ligoml 已提交
1208
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
L
Ligoml 已提交
1242 1243
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
L
Ligoml 已提交
1257 1258
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1259 1260 1261
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
L
Ligoml 已提交
1262 1263 1264 1265
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1266 1267 1268
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
L
Ligoml 已提交
1269 1270
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1271 1272 1273 1274 1275 1276 1277 1278
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
L
Ligoml 已提交
1279 1280 1281 1282 1283
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1284 1285 1286
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
L
Ligoml 已提交
1287 1288 1289 1290
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1291 1292 1293
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
L
Ligoml 已提交
1294 1295
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1326 1327
def t(input, name=None):
    """
1328 1329
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1330
    the paddle.transpose function which perm dimensions set 0 and 1.
1331

1332
    Args:
1333
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1334
        name(str, optional): The default value is None.  Normally there is no need for
1335 1336
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1337
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1338

1339
    Examples:
1340

1341 1342 1343
        .. code-block:: python
           :name: code-example
             import paddle
L
Ligoml 已提交
1344

1345
             # Example 1 (0-D tensor)
1346 1347
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
L
Ligoml 已提交
1348

1349
             # Example 2 (1-D tensor)
1350 1351 1352
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1353 1354

             # Example 3 (2-D tensor)
1355 1356 1357 1358 1359 1360 1361 1362
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1363

1364 1365 1366 1367 1368
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
L
Ligoml 已提交
1369 1370
            "tensor.transpose() instead." % len(input.shape)
        )
1371 1372 1373 1374 1375
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1376
        out = _C_ops.transpose(input, perm)
1377 1378 1379
        return out

    if _in_legacy_dygraph():
1380 1381 1382 1383
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1384
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1385 1386 1387
        return out

    check_variable_and_dtype(
L
Ligoml 已提交
1388 1389 1390 1391 1392
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose',
    )
1393 1394 1395 1396 1397 1398 1399

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
L
Ligoml 已提交
1400 1401 1402 1403 1404 1405
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': [1, 0]},
        )
1406
    return out
1407 1408


W
wanghuancoder 已提交
1409
def cross(x, y, axis=9, name=None):
1410
    """
1411
    Computes the cross product between two tensors along an axis.
1412

1413 1414
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1415

1416
    Args:
1417 1418
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1419
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1420
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1421 1422

    Returns:
1423
        Tensor. A Tensor with same data type as `x`.
1424

1425 1426
    Examples:
        .. code-block:: python
1427

1428
            import paddle
1429

Z
Zhou Wei 已提交
1430 1431 1432 1433 1434 1435
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1446
    """
J
Jiabin Yang 已提交
1447
    if in_dygraph_mode():
1448
        axis = K_DEFAULT_DIM if axis is None else axis
1449
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1450 1451 1452
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1453
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1454
            else:
1455
                return _legacy_C_ops.cross(x, y)
1456
        else:
J
Jiabin Yang 已提交
1457 1458 1459 1460 1461
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

L
Ligoml 已提交
1462 1463 1464 1465 1466 1467
            helper.append_op(
                type='cross',
                inputs={'X': x, 'Y': y},
                outputs={'Out': out},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1468
            return out
1469 1470


1471
def cholesky(x, upper=False, name=None):
1472
    r"""
G
Guo Sheng 已提交
1473
    Computes the Cholesky decomposition of one symmetric positive-definite
1474 1475
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1476 1477 1478 1479 1480 1481
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1482
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1483 1484 1485 1486 1487 1488 1489
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
1490
        Tensor: A Tensor with same shape and data type as `x`. It represents \
G
Guo Sheng 已提交
1491
            triangular matrices generated by Cholesky decomposition.
1492

G
Guo Sheng 已提交
1493 1494 1495 1496 1497 1498
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1499 1500 1501
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1502
            x = paddle.to_tensor(x_data)
1503
            out = paddle.linalg.cholesky(x, upper=False)
1504
            print(out)
1505 1506 1507
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1508 1509

    """
H
hong 已提交
1510
    if in_dygraph_mode():
1511
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1512 1513

    if _in_legacy_dygraph():
1514
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1515

G
Guo Sheng 已提交
1516 1517 1518 1519
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
1520 1521 1522 1523 1524 1525
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
G
Guo Sheng 已提交
1526 1527 1528
    return out


1529 1530 1531 1532
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1533
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1534
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1535 1536

    Args:
1537 1538 1539 1540
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1541
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1542 1543
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1544
            the lower triangular of the matrix to compute.
1545 1546 1547 1548
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1566

1567
    """
1568 1569 1570 1571 1572 1573 1574
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
L
Ligoml 已提交
1575 1576 1577
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1578

1579 1580 1581 1582 1583 1584
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1585
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1586 1587

    if _in_legacy_dygraph():
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
L
Ligoml 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
        return _legacy_C_ops.matrix_rank(
            x,
            tol_tensor,
            "tol",
            tol_attr,
            'hermitian',
            hermitian,
            'use_default_tol',
            use_default_tol,
        )
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
L
Ligoml 已提交
1635 1636 1637
    helper.append_op(
        type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
1638 1639 1640
    return out


1641 1642 1643 1644 1645 1646 1647 1648 1649
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1650 1651
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1652 1653 1654 1655
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1656
        Tensor: The product Tensor.
1657 1658

    Examples:
S
sunzhongkai588 已提交
1659 1660 1661
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1662

S
sunzhongkai588 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1672 1673 1674 1675 1676 1677
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1678

1679
    """
Y
yaoxuefeng 已提交
1680 1681 1682 1683
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
L
Ligoml 已提交
1684 1685 1686 1687
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1688 1689
    if x_shape[2] != y_shape[1]:
        raise ValueError(
L
Ligoml 已提交
1690 1691 1692 1693
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1694 1695
    if x_shape[0] != y_shape[0]:
        raise ValueError(
L
Ligoml 已提交
1696 1697 1698 1699
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1700

1701
    if in_dygraph_mode():
1702
        return _C_ops.bmm(x, y)
1703

Z
zhiboniu 已提交
1704
    if paddle.in_dynamic_mode():
1705
        return _legacy_C_ops.bmm(x, y)
1706 1707

    helper = LayerHelper('bmm', **locals())
1708 1709 1710
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1711 1712


1713
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1714
    """
1715
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1716 1717 1718
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1719
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1720
            should be float32, float64, int32, int64.
1721 1722 1723 1724
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1725 1726

    Returns:
1727
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1728

1729
    Examples:
Q
Qi Li 已提交
1730
        .. code-block:: python
1731

Q
Qi Li 已提交
1732
            import paddle
1733

1734
            inputs = paddle.to_tensor([1, 2, 1])
1735 1736
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1737
    """
H
hong 已提交
1738
    if in_dygraph_mode():
1739
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1740 1741

    if _in_legacy_dygraph():
L
Ligoml 已提交
1742 1743 1744
        return _legacy_C_ops.histogram(
            input, "bins", bins, "min", min, "max", max
        )
Q
Qi Li 已提交
1745 1746

    helper = LayerHelper('histogram', **locals())
L
Ligoml 已提交
1747 1748 1749
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
    )
Q
Qi Li 已提交
1750
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
L
Ligoml 已提交
1751 1752 1753 1754 1755 1756
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins, 'min': min, 'max': max},
    )
Q
Qi Li 已提交
1757
    return out
S
smallv0221 已提交
1758 1759 1760 1761


def bincount(x, weights=None, minlength=0, name=None):
    """
L
Ligoml 已提交
1762
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

H
hong 已提交
1790
    if _non_static_mode():
1791
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1792 1793 1794 1795 1796 1797

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
L
Ligoml 已提交
1798 1799 1800 1801 1802 1803
        check_variable_and_dtype(
            weights,
            'Weights',
            ['int32', 'int64', 'float32', 'float64'],
            'bincount',
        )
S
smallv0221 已提交
1804 1805 1806
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
1807 1808 1809 1810 1811 1812
    helper.append_op(
        type='bincount',
        inputs={'X': x, 'Weights': weights},
        outputs={'Out': out},
        attrs={'minlength': minlength},
    )
S
smallv0221 已提交
1813
    return out
1814 1815 1816 1817 1818 1819 1820


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1821
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1822
            should be one of float32, float64.
F
furnace 已提交
1823
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1839 1840
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1841
            out = paddle.mv(x, vec)
1842 1843 1844
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1845
    """
J
Jiabin Yang 已提交
1846
    if in_dygraph_mode():
1847
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1848 1849
    else:
        if _in_legacy_dygraph():
1850
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1851 1852
            return out
        else:
1853

J
Jiabin Yang 已提交
1854 1855 1856
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
L
Ligoml 已提交
1857 1858 1859
                    check_variable_and_dtype(
                        val, name, ['float32', 'float64'], 'mv'
                    )
J
Jiabin Yang 已提交
1860 1861 1862 1863
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
L
Ligoml 已提交
1864 1865 1866 1867
                        "x should be 2-dimensional. But received x's dimention: {}".format(
                            x_shape
                        )
                    )
J
Jiabin Yang 已提交
1868 1869
                if len(vec_shape) != 1:
                    raise ValueError(
L
Ligoml 已提交
1870 1871 1872 1873
                        "vec should be 1-dimensional. But received vec's dimention: {}".format(
                            vec_shape
                        )
                    )
J
Jiabin Yang 已提交
1874 1875 1876 1877 1878

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
1879 1880 1881
            helper.append_op(
                type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
            )
J
Jiabin Yang 已提交
1882
            return out
1883 1884


1885
def det(x, name=None):
H
huangxu96 已提交
1886 1887 1888 1889 1890 1891 1892 1893
    """
    Calculates determinant value of a square matrix or batches of square matrices.
    Args:
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size
                    `(*, n, n)` where `*` is one or more batch dimensions.
    Returns:
        y (Tensor):the determinant value of a square matrix or batches of square matrices.

1894
    Examples:
H
huangxu96 已提交
1895 1896 1897 1898 1899 1900
        .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1901
        A = paddle.linalg.det(x)
H
huangxu96 已提交
1902 1903

        print(A)
1904

H
huangxu96 已提交
1905 1906
        # [ 0.02547996,  2.52317095, -6.15900707])

1907

H
huangxu96 已提交
1908
    """
C
chentianyu03 已提交
1909
    if in_dygraph_mode():
1910
        return _C_ops.det(x)
C
chentianyu03 已提交
1911 1912

    if _in_legacy_dygraph():
1913
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1914 1915 1916 1917

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
L
Ligoml 已提交
1918 1919 1920 1921
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1922

L
Ligoml 已提交
1923 1924 1925 1926 1927 1928
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
1929 1930 1931
    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
1932 1933 1934
    helper.append_op(
        type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
1935 1936 1937
    return out


1938
def slogdet(x, name=None):
H
huangxu96 已提交
1939 1940 1941
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1942

H
huangxu96 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1954
    Examples:
H
huangxu96 已提交
1955 1956 1957 1958 1959 1960
    .. code-block:: python

        import paddle

        x =  paddle.randn([3,3,3])

1961
        A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1962 1963

        print(A)
1964

H
huangxu96 已提交
1965 1966 1967 1968
        # [[ 1.        ,  1.        , -1.        ],
        # [-0.98610914, -0.43010661, -0.10872950]])

    """
1969
    if in_dygraph_mode():
1970
        return _C_ops.slogdet(x)
1971 1972

    elif paddle.in_dynamic_mode():
1973
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1974 1975 1976 1977

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
L
Ligoml 已提交
1978 1979 1980 1981
    assert len(input_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "but received Input x's dimensional: %s.\n" % len(input_shape)
    )
H
huangxu96 已提交
1982

L
Ligoml 已提交
1983 1984 1985 1986 1987 1988
    assert (
        input_shape[-1] == input_shape[-2]
    ), "Expect squared input," "but received %s by %s matrix.\n" % (
        input_shape[-2],
        input_shape[-1],
    )
H
huangxu96 已提交
1989 1990 1991
    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
1992 1993 1994
    helper.append_op(
        type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]}
    )
H
huangxu96 已提交
1995 1996 1997
    return out


1998 1999
def svd(x, full_matrices=False, name=None):
    r"""
2000 2001 2002 2003 2004
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
2005 2006
        X = U * diag(S) * VT

2007 2008
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
2009
            where `...` is zero or more batch dimensions. N and M can be arbitraty
2010 2011 2012 2013
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
2014
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
2015
            If full_matrices = False, svd op will use a economic method to store U and V.
2016
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
2017
        name (str, optional): Name for the operation (optional, default is None).
2018
            For more information, please refer to :ref:`api_guide_Name`.
2019 2020

    Returns:
2021
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
2022

2023 2024 2025 2026
    Examples:
        .. code-block:: python

            import paddle
2027 2028 2029

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
2030
            u, s, vh = paddle.linalg.svd(x)
2031 2032 2033 2034 2035
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

2036
            print (s)
2037
            #S = [8.14753743, 0.78589688]
2038
            print (vh)
2039 2040
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
2041

2042
            # one can verify : U * S * VT == X
2043
            #                  U * UH == I
2044
            #                  V * VH == I
2045
    """
2046
    if in_dygraph_mode():
2047
        return _C_ops.svd(x, full_matrices)
2048
    if _in_legacy_dygraph():
2049
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
L
Ligoml 已提交
2061
        outputs={'U': u, 'VH': vh, 'S': s},
2062 2063
        attrs=attrs,
    )
2064 2065 2066
    return u, s, vh


2067 2068 2069
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
2070

2071 2072 2073 2074 2075
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2076

2077 2078 2079 2080
    Specifically,

    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power
    of `n`.
2081

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to
    the power of `abs(n)`.

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2092
        name (str, optional): Name for the operation (optional, default is None).
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2107
            print(paddle.linalg.matrix_power(x, 2))
2108 2109 2110 2111
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2112
            print(paddle.linalg.matrix_power(x, 0))
2113 2114 2115 2116
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2117
            print(paddle.linalg.matrix_power(x, -2))
2118 2119 2120 2121
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2122
    if in_dygraph_mode():
2123
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2124 2125

    if _in_legacy_dygraph():
2126
        return _legacy_C_ops.matrix_power(x, "n", n)
2127 2128 2129 2130 2131

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Ligoml 已提交
2132 2133 2134 2135 2136 2137
    helper.append_op(
        type='matrix_power',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'n': n},
    )
2138
    return out
2139 2140


2141 2142 2143 2144 2145 2146 2147
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
L
Ligoml 已提交
2148 2149
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2150
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
L
Ligoml 已提交
2151
            If mode = "reduced", qr op will return reduced Q and R matrices,
2152
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
L
Ligoml 已提交
2153
            If mode = "complete", qr op will return complete Q and R matrices,
2154 2155 2156 2157 2158
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
2159

2160
    Returns:
L
Ligoml 已提交
2161
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2162
        If mode = "r", qr will return a tensor which represents R.
L
Ligoml 已提交
2163 2164

    Examples:
2165 2166
        .. code-block:: python

L
Ligoml 已提交
2167
            import paddle
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
L
Ligoml 已提交
2180 2181

            # one can verify : X = Q * R ;
2182
    """
Y
Yulong Ao 已提交
2183
    if in_dygraph_mode():
2184
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2185 2186 2187 2188 2189
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2190
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
L
Ligoml 已提交
2202 2203 2204
    helper.append_op(
        type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
    )
2205 2206 2207 2208 2209 2210
    if mode == "r":
        return r
    else:
        return q, r


2211 2212
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
L
Ligoml 已提交
2213
    Computes the LU factorization of an N-D(N>=2) matrix x.
2214

L
Ligoml 已提交
2215
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])
    # return ones

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
2235

2236 2237 2238
    Returns:
        factorization (Tensor): LU matrix, the factorization of input X.

L
Ligoml 已提交
2239 2240
        pivots (IntTensor): the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
                    intermediate transpositions of rows. The final permutation `perm` could be
2241 2242
                    reconstructed by this, details refer to upper example.

L
Ligoml 已提交
2243 2244
        infos (IntTensor, optional): if `get_infos` is `True`, this is a tensor of size (∗(N-2))
                    where non-zero values indicate whether factorization for the matrix or each minibatch
2245 2246
                    has succeeded or failed.

L
Ligoml 已提交
2247 2248

    Examples:
2249 2250
        .. code-block:: python

L
Ligoml 已提交
2251
            import paddle
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
L
Ligoml 已提交
2267

2268 2269 2270 2271 2272 2273
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
L
Ligoml 已提交
2274
            # [1., 0., 0.]]),
2275 2276 2277 2278
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
L
Ligoml 已提交
2279
            # [0.60000000, 0.50000000]]),
2280 2281 2282 2283 2284
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

L
Ligoml 已提交
2285 2286

            # one can verify : X = P @ L @ U ;
2287
    """
L
Lin Manhui 已提交
2288 2289

    if in_dygraph_mode():
2290
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2291
    elif paddle.in_dynamic_mode():
2292
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2293 2294 2295 2296 2297 2298 2299 2300
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
L
Ligoml 已提交
2301 2302 2303 2304 2305 2306
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2307 2308 2309 2310 2311 2312 2313 2314
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
L
Ligoml 已提交
2315
    Unpack L U and P to single matrix tensor .
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
    # ones = eye(rows) #eye matrix of rank rows
    # for i in range(cols):
    #     swap(ones[i], ones[pivots[i]])


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
2335

2336 2337 2338 2339 2340 2341 2342
    Returns:
        P (Tensor): Permutation matrix P of lu factorization.

        L (Tensor): The lower triangular matrix tensor of lu factorization.

        U (Tensor): The upper triangular matrix tensor of lu factorization.

L
Ligoml 已提交
2343 2344

    Examples:
2345 2346
        .. code-block:: python

L
Ligoml 已提交
2347
            import paddle
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
L
Ligoml 已提交
2363

2364 2365 2366 2367 2368 2369
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
L
Ligoml 已提交
2370
            # [1., 0., 0.]]),
2371 2372 2373 2374
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
L
Ligoml 已提交
2375
            # [0.60000000, 0.50000000]]),
2376 2377 2378 2379 2380
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

L
Ligoml 已提交
2381
            # one can verify : X = P @ L @ U ;
2382 2383
    """

2384
    if in_dygraph_mode():
2385
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2386 2387
        return P, L, U

Z
zhiboniu 已提交
2388
    if paddle.in_dynamic_mode():
L
Ligoml 已提交
2389 2390 2391
        P, L, U = _legacy_C_ops.lu_unpack(
            x, y, 'unpack_ludata', unpack_ludata, 'unpack_pivots', unpack_pivots
        )
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
L
Ligoml 已提交
2403 2404 2405 2406 2407 2408
    helper.append_op(
        type='lu_unpack',
        inputs={'X': x, 'Pivots': y},
        outputs={'Pmat': p, 'L': l, 'U': u},
        attrs=attrs,
    )
2409 2410 2411
    return p, l, u


L
Lijunhui 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
def eig(x, name=None):
    """
    This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.

    .. note::
        If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        This API is only supported on CPU device.
        The output datatype is always complex for both real and complex input.

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
L
Ligoml 已提交
2426
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.device.set_device("cpu")

            x_data = np.array([[1.6707249, 7.2249975, 6.5045543],
                               [9.956216,  8.749598,  6.066444 ],
                               [4.4251957, 1.7983172, 0.370647 ]]).astype("float32")
            x = paddle.to_tensor(x_data)
            w, v = paddle.linalg.eig(x)
            print(w)
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

            print(v)
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2460
    if in_dygraph_mode():
2461
        return _C_ops.eig(x)
2462
    elif paddle.in_dynamic_mode():
2463
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2464 2465
        return w, v

L
Ligoml 已提交
2466 2467 2468
    check_variable_and_dtype(
        x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
    )
L
Lijunhui 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2481 2482 2483
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2484 2485 2486

    Warning:
        The gradient kernel of this operator does not yet developed.
2487 2488 2489 2490
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2491
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2492
            Its data type should be float32, float64, complex64, or complex128.
2493
        name (str, optional): Name for the operation (optional, default is None).
2494
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
2495

2496
    Returns:
2497
        Tensor: A tensor containing the unsorted eigenvalues which has the same batch dimensions with `x`.
2498 2499 2500 2501 2502 2503
            The eigenvalues are complex-valued even when `x` is real.

    Examples:
        .. code-block:: python

            import paddle
2504

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

L
Ligoml 已提交
2517 2518 2519
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals'
    )
2520 2521 2522 2523

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
L
Ligoml 已提交
2524 2525 2526 2527
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2528 2529 2530

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
L
Ligoml 已提交
2531 2532 2533 2534
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2535

R
Ruibiao Chen 已提交
2536
    if in_dygraph_mode():
2537
        return _C_ops.eigvals(x)
2538 2539
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2540 2541 2542 2543 2544 2545 2546

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2547 2548 2549 2550
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2551
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        # A * B
        A_data = np.random.random([3, 4]).astype(np.float32)
        B_data = np.random.random([4, 5]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
2593
        out = paddle.linalg.multi_dot([A, B])
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
        print(out.numpy().shape)
        # [3, 5]

        # A * B * C
        A_data = np.random.random([10, 5]).astype(np.float32)
        B_data = np.random.random([5, 8]).astype(np.float32)
        C_data = np.random.random([8, 7]).astype(np.float32)
        A = paddle.to_tensor(A_data)
        B = paddle.to_tensor(B_data)
        C = paddle.to_tensor(C_data)
2604
        out = paddle.linalg.multi_dot([A, B, C])
2605 2606 2607 2608
        print(out.numpy().shape)
        # [10, 7]

    """
2609
    if _in_legacy_dygraph():
2610
        return _legacy_C_ops.multi_dot(x)
2611
    if in_dygraph_mode():
2612
        return _C_ops.multi_dot(x)
2613 2614 2615

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
L
Ligoml 已提交
2616 2617 2618 2619 2620 2621
        check_variable_and_dtype(
            item,
            'x[' + str(id) + ']',
            ['float16', 'float32', 'float64'],
            'multi_dot',
        )
2622 2623
        if item.dtype != x[0].dtype:
            raise TypeError(
L
Ligoml 已提交
2624 2625
                "All the Tensors in the input must have the same data type."
            )
2626 2627 2628 2629 2630 2631

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2632 2633 2634 2635


def eigh(x, UPLO='L', name=None):
    """
2636
    Compute the eigenvalues and eigenvectors of a
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:

        out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64. The eigenvalues of eigh op.
        out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,complex64 and complex128. The eigenvectors of eigh op.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
2660
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2661 2662 2663 2664 2665 2666 2667
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2668
    if in_dygraph_mode():
2669
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2670 2671

    if _in_legacy_dygraph():
2672
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2673 2674 2675 2676 2677 2678

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
L
Ligoml 已提交
2679 2680
                "length of Input(input) is %s." % len(x.shape)
            )
2681 2682
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
L
Ligoml 已提交
2683 2684 2685 2686
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
2687
        if UPLO != 'L' and UPLO != 'U':
2688
            raise ValueError(
L
Ligoml 已提交
2689 2690
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
2691 2692 2693 2694

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
L
Ligoml 已提交
2695 2696 2697
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigh'
    )
2698 2699 2700 2701

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
2702 2703 2704 2705 2706 2707
    helper.append_op(
        type='eigh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO},
    )
2708
    return out_value, out_vector
A
andyjpaddle 已提交
2709 2710 2711 2712


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2713
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2724

A
andyjpaddle 已提交
2725 2726 2727
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2728 2729 2730
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2731 2732 2733 2734
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2735
        rcond(Tensor, optional): the tolerance value to determine
2736
            when is a singular value zero. Default:1e-15.
2737 2738

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2739
            if complex or symmetric if real. Default: False.
2740 2741

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2742
            the layer will be named automatically.
2743

A
andyjpaddle 已提交
2744
    Returns:
2745
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2746
        pseudo inverse of x. Its shape should be (*, n, m).
2747

A
andyjpaddle 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2774 2775 2776
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2777 2778
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2779 2780 2781 2782
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2783

2784 2785 2786 2787 2788 2789
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2790
            st = _C_ops.unsqueeze(singular, [-2])
2791 2792 2793

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2794
            v = _C_ops.transpose(vt, perm)
2795 2796

            out_1 = v * st
2797
            out_2 = _C_ops.matmul(out_1, u, False, True)
2798 2799 2800
            return out_2
        else:
            # combine eigh and matmul op
2801
            s, u = _C_ops.eigh(x, 'UPLO')
2802
            s_abs = paddle.abs(s)
2803
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2815
            st = _C_ops.unsqueeze(singular, [-2])
2816 2817

            out_1 = u * st
2818 2819
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2820 2821 2822
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2823 2824
        if not hermitian:
            # combine svd and matmul op
2825
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
L
Ligoml 已提交
2826 2827 2828
            max_singular_val = _legacy_C_ops.reduce_max(
                s, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2829 2830 2831 2832 2833 2834
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2835 2836 2837 2838 2839
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2840
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2841 2842 2843

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2844
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2845 2846

            out_1 = v * st
2847
            if in_dygraph_mode():
2848
                out_2 = _C_ops.matmul(out_1, u, False, True)
2849
            else:
L
Ligoml 已提交
2850 2851 2852
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2853 2854 2855
            return out_2
        else:
            # combine eigh and matmul op
2856
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2857
            s_abs = paddle.abs(s)
L
Ligoml 已提交
2858 2859 2860
            max_singular_val = _legacy_C_ops.reduce_max(
                s_abs, 'dim', [-1], 'keep_dim', True, 'reduce_all', False
            )
A
andyjpaddle 已提交
2861 2862 2863 2864 2865 2866
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2867 2868 2869 2870 2871
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2872
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2873 2874

            out_1 = u * st
2875
            u_conj = _legacy_C_ops.conj(u)
2876
            if in_dygraph_mode():
2877
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2878
            else:
L
Ligoml 已提交
2879 2880 2881
                out_2 = _legacy_C_ops.matmul_v2(
                    out_1, u_conj, 'trans_x', False, 'trans_y', True
                )
A
andyjpaddle 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
L
Ligoml 已提交
2895
                outputs={'U': u, 'VH': vt, 'S': s},
2896 2897
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2898 2899

            max_singular_val = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
2900 2901 2902 2903 2904 2905
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2906

2907
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2908 2909
            cutoff = rcond * max_singular_val
            y = float('inf')
2910
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2911 2912

            condition = s > cutoff
2913 2914 2915 2916 2917
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2918 2919 2920

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
L
Ligoml 已提交
2921 2922 2923 2924 2925 2926
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2927 2928 2929 2930 2931

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
2932 2933 2934 2935 2936 2937
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2938 2939

            out_1 = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
2940 2941 2942 2943 2944 2945
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2946 2947 2948 2949 2950
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
L
Ligoml 已提交
2951
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2952
                outputs={'Out': out_2},
L
Ligoml 已提交
2953
                attrs={'trans_x': False, 'trans_y': True},
2954
            )
A
andyjpaddle 已提交
2955 2956 2957 2958 2959
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
L
Ligoml 已提交
2960 2961 2962 2963 2964
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
L
Ligoml 已提交
2975 2976 2977 2978 2979 2980
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2981
            s_abs = helper.create_variable_for_type_inference(s_type)
L
Ligoml 已提交
2982 2983 2984
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2985
            max_singular_val = helper.create_variable_for_type_inference(s_type)
L
Ligoml 已提交
2986 2987 2988 2989 2990 2991
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2992

2993
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2994 2995
            cutoff = rcond * max_singular_val
            y = float('inf')
2996
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2997 2998

            condition = s_abs > cutoff
2999 3000 3001 3002 3003
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
3004 3005 3006

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
L
Ligoml 已提交
3007 3008 3009 3010 3011 3012
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
3013 3014

            out_1 = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3015 3016 3017 3018 3019 3020
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3021 3022 3023
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
L
Ligoml 已提交
3024 3025 3026
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
3027 3028 3029 3030

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
L
Ligoml 已提交
3031
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
3032
                outputs={'Out': out_2},
L
Ligoml 已提交
3033
                attrs={'trans_x': False, 'trans_y': True},
3034
            )
A
andyjpaddle 已提交
3035
            return out_2
W
Weilong Wu 已提交
3036 3037 3038 3039 3040 3041 3042


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
3043

W
Weilong Wu 已提交
3044 3045 3046 3047
    .. math::
        Out = X^-1 * Y
    Specifically,
    - This system of linear equations has one solution if and only if input 'X' is invertible.
3048

W
Weilong Wu 已提交
3049 3050 3051 3052 3053
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3054
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3055
            For more information, please refer to :ref:`api_guide_Name`.
3056

W
Weilong Wu 已提交
3057
    Returns:
3058
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3059
        Its data type should be the same as that of `x`.
3060

W
Weilong Wu 已提交
3061 3062
    Examples:
    .. code-block:: python
3063

W
Weilong Wu 已提交
3064 3065 3066
        # a square system of linear equations:
        # 2*X0 + X1 = 9
        # X0 + 2*X1 = 8
3067

W
Weilong Wu 已提交
3068 3069
        import paddle
        import numpy as np
3070

W
Weilong Wu 已提交
3071 3072 3073 3074 3075
        np_x = np.array([[3, 1],[1, 2]])
        np_y = np.array([9, 8])
        x = paddle.to_tensor(np_x, dtype="float64")
        y = paddle.to_tensor(np_y, dtype="float64")
        out = paddle.linalg.solve(x, y)
3076

W
Weilong Wu 已提交
3077 3078 3079
        print(out)
        # [2., 3.])
    """
3080
    if in_dygraph_mode():
3081
        return _C_ops.solve(x, y)
3082 3083

    if _in_legacy_dygraph():
3084
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
3085 3086 3087 3088 3089 3090 3091

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
3092 3093 3094
    helper.append_op(
        type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
    )
W
Weilong Wu 已提交
3095
    return out
3096 3097


L
Ligoml 已提交
3098 3099 3100
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
    r"""
    Computes the solution of a system of equations with a triangular coefficient matrix `x` and
    multiple right-hand sides `y` .

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
L
Ligoml 已提交
3111
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3112
            zero or more batch dimensions. Its data type should be float32 or float64.
L
Ligoml 已提交
3113
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3114 3115
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
L
Ligoml 已提交
3116
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
    .. code-block:: python

        # a square system of linear equations:
        # x1 +   x2  +   x3 = 0
        #      2*x2  +   x3 = -9
        #               -x3 = 5

        import paddle
        import numpy as np

L
Ligoml 已提交
3135
        x = paddle.to_tensor([[1, 1, 1],
3136 3137 3138 3139 3140 3141 3142 3143
                              [0, 2, 1],
                              [0, 0,-1]], dtype="float64")
        y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.triangular_solve(x, y, upper=True)

        print(out)
        # [7, -2, -5]
    """
H
hong 已提交
3144
    if in_dygraph_mode():
3145
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3146

Z
zhiboniu 已提交
3147
    if paddle.in_dynamic_mode():
L
Ligoml 已提交
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
        return _legacy_C_ops.triangular_solve(
            x,
            y,
            'upper',
            upper,
            'transpose',
            transpose,
            'unitriangular',
            unitriangular,
        )
3158 3159 3160 3161 3162 3163 3164

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    helper.append_op(
        type='triangular_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={
            'upper': upper,
            'transpose': transpose,
            'unitriangular': unitriangular,
        },
    )
3175 3176 3177
    return out


Z
zhiboniu 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
L
Ligoml 已提交
3188
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
    .. code-block:: python

        import paddle

L
Ligoml 已提交
3202
        u = paddle.to_tensor([[1, 1, 1],
Z
zhiboniu 已提交
3203 3204 3205 3206 3207 3208 3209 3210
                                [0, 2, 1],
                                [0, 0,-1]], dtype="float64")
        b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
        out = paddle.linalg.cholesky_solve(b, u, upper=True)

        print(out)
        # [-2.5, -7, 9.5]
    """
H
hong 已提交
3211
    if in_dygraph_mode():
3212
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3213 3214

    if _in_legacy_dygraph():
3215
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3216 3217 3218 3219 3220 3221

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
3222 3223 3224 3225 3226 3227
    helper.append_op(
        type='cholesky_solve',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'upper': upper},
    )
Z
zhiboniu 已提交
3228 3229 3230
    return out


3231 3232
def eigvalsh(x, UPLO='L', name=None):
    """
L
Ligoml 已提交
3233
    Computes the eigenvalues of a
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            x_data = np.array([[1, -2j], [2j, 5]])
            x = paddle.to_tensor(x_data)
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
            #[0.17157288, 5.82842712]
    """
3258
    if in_dygraph_mode():
3259
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3260 3261 3262
        return values

    elif paddle.in_dynamic_mode():
3263
        is_test = x.stop_gradient
3264
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3265 3266 3267 3268 3269 3270 3271
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
L
Ligoml 已提交
3272 3273
                "length of Input(input) is %s." % len(x.shape)
            )
3274 3275
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
L
Ligoml 已提交
3276 3277 3278 3279
                "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                    x_shape
                )
            )
3280
        if UPLO != 'L' and UPLO != 'U':
3281
            raise ValueError(
L
Ligoml 已提交
3282 3283
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
            )
3284 3285 3286 3287

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
L
Ligoml 已提交
3288 3289 3290 3291 3292 3293
    check_variable_and_dtype(
        x,
        'dtype',
        ['float32', 'float64', 'complex64', 'complex128'],
        'eigvalsh',
    )
3294 3295 3296 3297 3298

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
L
Ligoml 已提交
3299 3300 3301 3302 3303 3304
    helper.append_op(
        type='eigvalsh',
        inputs={'X': x},
        outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
        attrs={'UPLO': UPLO, 'is_test': is_test},
    )
3305
    return out_value
3306 3307


3308 3309 3310 3311 3312 3313 3314 3315
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
L
Ligoml 已提交
3316
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3317
            should be one of float32, float64.
L
Ligoml 已提交
3318 3319
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3320
            machine precision of x_dtype.
L
Ligoml 已提交
3321 3322 3323
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3324
            for CUDA inputs.
L
Ligoml 已提交
3325
        name(str, optional): The default value is None. Normally there is no need for user to set
3326 3327 3328
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3329 3330 3331 3332 3333 3334 3335
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3368 3369 3370
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
L
Ligoml 已提交
3371 3372 3373 3374
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3375 3376 3377 3378
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
L
Ligoml 已提交
3379 3380 3381 3382
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3383 3384 3385 3386
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3400
    if _non_static_mode():
3401
        if in_dygraph_mode():
3402
            solution, residuals, rank, singular_values = _C_ops.lstsq(
L
Ligoml 已提交
3403 3404
                x, y, rcond, driver
            )
3405
        else:
3406
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
L
Ligoml 已提交
3407 3408
                x, y, 'rcond', rcond, 'driver', driver
            )
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
L
Ligoml 已提交
3419 3420 3421 3422 3423 3424
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
    check_variable_and_dtype(
        y, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'lstsq'
    )
3425 3426 3427 3428 3429 3430

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

L
Ligoml 已提交
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
    helper.append_op(
        type='lstsq',
        inputs={'X': x, 'Y': y},
        outputs={
            'Solution': solution,
            'Residuals': residuals,
            'Rank': rank,
            'SingularValues': singular_values,
        },
        attrs={'rcond': rcond, 'driver': driver},
    )
3442 3443 3444 3445 3446 3447 3448 3449

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3450 3451 3452 3453


def corrcoef(x, rowvar=True, name=None):
    """
L
Ligoml 已提交
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3478

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
L
Ligoml 已提交
3493 3494
            "length of Input(input) is %s." % len(x.shape)
        )
3495 3496 3497
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
L
Ligoml 已提交
3498
    if c.ndim == 0:
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
L
Ligoml 已提交
3513 3514 3515
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3516 3517 3518 3519
    else:
        c = paddle.clip(c, -1, 1)

    return c