pybind.cc 63.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/garbage_collector.h"
28
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
29
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
30 31 32
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/framework/op_info.h"
34
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
35
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
40
#include "paddle/fluid/framework/version.h"
41
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
42
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
53
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/exception.h"
57
#include "paddle/fluid/pybind/executor_lite.h"
D
dongdaxiang 已提交
58
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
59
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/ir.h"
W
wopeizl 已提交
62
#ifndef _WIN32
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
64
#endif
65 66
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
67
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
68
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/pybind/tensor_py.h"
70
#include "paddle/fluid/string/to_string.h"
71

D
Dong Zhihong 已提交
72
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
73
#ifndef _WIN32
Y
Yi Wang 已提交
74
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
75
#endif
Y
Yi Wang 已提交
76 77
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
78 79
#endif

M
minqiyang 已提交
80 81
#include "pybind11/stl.h"

82 83 84 85
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
86 87 88
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

89
namespace paddle {
90
namespace pybind {
91
bool IsCompiledWithCUDA() {
92
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
93 94 95 96 97 98
  return false;
#else
  return true;
#endif
}

99 100 101 102 103 104 105 106
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

107 108 109 110 111 112 113 114
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

115
bool IsCompiledWithBrpc() {
116
#ifndef PADDLE_WITH_DISTRIBUTE
117 118
  return false;
#endif
119 120 121 122 123 124

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
125 126
}

Y
update  
Yancey1989 已提交
127
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
128
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
129 130 131 132 133 134
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
135 136 137 138 139 140 141 142 143 144
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

145
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
146 147 148
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
149
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
150

151
  m.doc() = "C++ core of PaddlePaddle";
152

153 154 155 156
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

157
  BindException(&m);
Y
Yu Yang 已提交
158

S
sneaxiy 已提交
159
  m.def(
S
sneaxiy 已提交
160
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
161 162 163 164
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
165 166 167
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
168 169 170
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
171
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
172

173
  m.def("_set_fuse_parameter_group_size",
174
        &paddle::framework::ir::SetFuseParameterGroupsSize);
175
  m.def("_set_fuse_parameter_memory_size",
176
        &paddle::framework::ir::SetFuseParameterMemorySize);
177

S
sneaxiy 已提交
178 179 180
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

181 182 183 184 185 186 187
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
188
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
189 190
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
191
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
192

M
minqiyang 已提交
193
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
194 195 196 197 198 199 200 201
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
202
      .def("_run_backward",
X
Xin Pan 已提交
203
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
204
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
205
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
206
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
207
      .def("_grad_ivar",
M
minqiyang 已提交
208
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
209
           py::return_value_policy::reference)
M
minqiyang 已提交
210
      .def("_copy_to",
P
Paddle CI 已提交
211
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
212 213 214 215 216
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
217
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
218
      .def("_copy_to",
P
Paddle CI 已提交
219
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
220 221 222 223 224
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
225
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
226
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
227
           py::return_value_policy::reference)
228 229 230
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
231
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
232 233 234 235
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
236

237
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
238
      .def(py::init<const std::string &>())
239
      .def("register_backward_hooks",
240 241 242 243 244
           [](imperative::OpBase &self, const py::object &callable,
              bool front = false) {
             self.RegisterBackwardHooks(callable, front);
           },
           py::arg("callable"), py::arg("front") = false)
M
minqiyang 已提交
245 246 247 248 249 250 251 252 253 254
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
255 256 257 258 259 260
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
261
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
262
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
263 264 265 266 267 268
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
269 270
          py::return_value_policy::reference);

X
Xin Pan 已提交
271
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
272
  layer.def(py::init<>())
X
Xin Pan 已提交
273 274 275
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
276
      });
X
Xin Pan 已提交
277

X
polish  
Xin Pan 已提交
278
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
279
      .def(py::init<>())
X
Xin Pan 已提交
280 281
      .def_static(
          "apply",
X
Xin Pan 已提交
282
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
283
              -> std::vector<imperative::VarBase *> {
284 285 286 287 288 289 290 291 292 293 294
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
295 296
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
297 298 299 300 301
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
302

303
  BindImperative(&m);
304

305
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
306
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
307 308
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
309
      .def("_get_dims",
310
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
311
      .def("_set_dims",
Q
qijun 已提交
312
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
313
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
314
           })
Y
yuyang18 已提交
315
      .def("_set_layout",
D
dzhwinter 已提交
316 317 318
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
319
      .def("_alloc_float",
D
dzhwinter 已提交
320
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
321
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
322
           })
Y
yuyang18 已提交
323
      .def("_alloc_float",
Y
Yu Yang 已提交
324
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
325
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
326
           })
Y
yuyang18 已提交
327
      .def("_alloc_int",
Y
Yu Yang 已提交
328
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
329
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
330
           })
Y
yuyang18 已提交
331
      .def("_alloc_int",
D
dzhwinter 已提交
332
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
333
             self.mutable_data<int>(place);
Q
qijun 已提交
334
           })
Y
yuyang18 已提交
335
      .def("_alloc_int",
C
chengduoZH 已提交
336 337 338
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
339
      .def("_alloc_float",
C
chengduoZH 已提交
340 341 342
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
343 344
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
345
      .def("set", PyCPUTensorSetFromArray<double>)
346
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
347
      .def("set", PyCPUTensorSetFromArray<bool>)
348
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
349
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
350
      .def("set", PyCPUTensorSetFromArray<int8_t>)
351
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
352 353
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
354
      .def("set", PyCUDATensorSetFromArray<double>)
355
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
356
      .def("set", PyCUDATensorSetFromArray<bool>)
357
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
358
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
359
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
360 361 362 363 364 365
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
366
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
367
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
368
#endif
369
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
370
      .def("memory_size", [](Tensor &self) { return self.memory_size(); })
Y
yuyang18 已提交
371 372 373 374
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
375
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
376 377
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
378

X
Xin Pan 已提交
379 380 381 382 383 384 385 386 387
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

Z
Zeng Jinle 已提交
388 389 390
    For example, a LoDTensor X can look like the example below. It contains 
    2 sequences. The first has length 2 and the second has length 3, as 
    described by x.lod.
X
Xin Pan 已提交
391

Z
Zeng Jinle 已提交
392 393 394
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
395

Z
Zeng Jinle 已提交
396 397 398
    x.lod  = [[2, 3]]
     
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
399

Z
Zeng Jinle 已提交
400
    x.shape = [5, 2]
X
Xin Pan 已提交
401

Z
Zeng Jinle 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
419 420 421 422 423 424 425 426 427 428 429 430

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
431
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
432 433 434 435 436 437 438 439 440 441 442 443 444 445
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
446
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
447 448 449 450 451
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
452
      .def("set_lod",
453
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
454
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
455
             LoD new_lod;
456 457
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
458 459
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
460
             self.set_lod(new_lod);
S
sneaxiy 已提交
461 462 463 464 465 466
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
467 468 469 470 471 472 473 474 475 476

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
477
           )DOC")
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
493 494 495 496
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
497
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
498 499
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
500 501

           Args:
502
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
503 504 505 506 507 508 509 510 511 512

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
513
           )DOC")
514 515 516 517 518 519 520 521
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
522 523 524 525 526 527
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
528 529 530 531 532 533 534 535 536 537 538

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
539
           )DOC")
G
gongweibao 已提交
540
      // Set above comments of set_lod.
541 542 543 544 545 546 547 548
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
549 550 551 552 553
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
554
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
555 556 557 558 559 560 561 562 563 564 565

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
566 567 568 569 570 571 572 573 574 575 576 577
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
578 579 580 581 582 583 584 585 586 587 588

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
589 590 591 592 593 594 595
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
596
           )DOC");
D
dangqingqing 已提交
597

Q
qijun 已提交
598 599 600 601 602 603 604 605 606 607 608
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
609 610
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
611 612
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
613 614 615 616 617 618 619 620 621
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
622
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
623
      .def("rows", [](SelectedRows &self) {
624 625 626 627 628
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
629
      });
Q
qijun 已提交
630

631
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
632 633 634

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
635
      .def(py::init<>())
636
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
637
      .def("set_int",
638 639
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
640 641 642 643 644 645 646
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
647
      .def("get_tensor",
648 649
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
650 651
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
652 653 654
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
655 656 657 658 659
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
660 661 662
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
663
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
664 665 666 667 668
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
669
#endif
Y
Refine  
Yu Yang 已提交
670 671 672 673 674
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
675
           py::return_value_policy::reference);
676

S
sneaxiy 已提交
677
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
678

S
sneaxiy 已提交
679 680 681 682
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
683

S
sneaxiy 已提交
684 685
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
686
      .def("push",
S
sneaxiy 已提交
687
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
688
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
689
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
690
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
691
           })
S
sneaxiy 已提交
692 693 694 695
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
696

S
sneaxiy 已提交
697
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
698 699
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
700
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
701 702 703 704
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
705
        py::return_value_policy::copy);
S
sneaxiy 已提交
706

S
sneaxiy 已提交
707
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
727 728
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
729
      .def("var",
730
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
731
             return self.Var(name);
Y
Yu Yang 已提交
732
           },
S
sneaxiy 已提交
733 734
           py::arg("name"),
           R"DOC(
735
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
736

737
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
738
           current scope, the variable would be created. Otherwise,
739
           return the existing variable.
S
sneaxiy 已提交
740 741

           Args:
742 743
               name (str): the variable name.

S
sneaxiy 已提交
744
           Returns:
745
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
746 747 748 749
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
750
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
751
           its parent scope. Return None if not found.
752

S
sneaxiy 已提交
753 754
           Args:
               name (str): the variable name.
755

S
sneaxiy 已提交
756
           Returns:
757
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
758
           )DOC",
759
           py::return_value_policy::reference)
760
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
761 762 763 764 765 766
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
767
           py::return_value_policy::reference)
S
sneaxiy 已提交
768 769 770
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
771 772
           )DOC")
      .def("_kids", &Scope::kids);
773

S
sneaxiy 已提交
774 775 776 777 778 779
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
780 781
        R"DOC(
        Create a new scope.
782

S
sneaxiy 已提交
783 784 785
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
786 787
        py::return_value_policy::reference);

Y
Yu Yang 已提交
788 789
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
790 791
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
792 793 794 795 796 797 798 799 800 801
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
802 803
    return ret_values;
  });
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
820
  m.def("prune", [](const ProgramDesc &origin,
821
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
822
    ProgramDesc prog_with_targets(origin);
823
    for (const auto &t : targets) {
824
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
825
    }
826
    proto::ProgramDesc pruned_desc;
827
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
828
    return new ProgramDesc(pruned_desc);
829
  });
830 831 832 833
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
834 835 836
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
837 838
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
839
  // clang-format off
Y
Yu Yang 已提交
840
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
841 842
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
843
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
844 845 846
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
847
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
848
                      -> paddle::platform::DeviceContext* {
849
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
850
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
851
#else
Q
qijun 已提交
852
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
853
#endif
C
chengduoZH 已提交
854 855 856 857 858 859 860 861 862 863 864
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
865
// clang-format on
P
peizhilin 已提交
866
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
867 868
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
869 870 871 872
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
873 874 875 876 877 878

    Examples:
        .. code-block:: python

          gpu_place = fluid.CUDAPlace(0)

879
        )DOC")
S
sneaxiy 已提交
880 881 882 883 884 885 886 887 888 889 890 891
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
892 893 894 895 896 897
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
898
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
899

900 901 902
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
903 904 905 906 907 908

    Examples:
        .. code-block:: python

          cpu_place = fluid.CPUPlace()

909
        )DOC")
910
      .def(py::init<>())
S
sneaxiy 已提交
911 912 913 914 915 916
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
917
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
918

919 920 921
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
922 923 924 925 926 927

    Examples:
        .. code-block:: python

          place = fluid.CUDAPinnedPlace()

928
        )DOC")
S
sneaxiy 已提交
929
      .def("__init__",
S
sneaxiy 已提交
930
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
931 932 933
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
934
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
935
           })
S
sneaxiy 已提交
936 937 938 939 940 941 942 943
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
944 945
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
946 947
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
948 949 950 951 952
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
953 954
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
955 956 957 958 959 960
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
961 962 963 964
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
965 966
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
967 968 969 970 971
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
972
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
973
             self = gpu_place;
C
chengduoZH 已提交
974 975
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
976 977
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
978
      });
Y
Yu Yang 已提交
979

Y
Yu Yang 已提交
980 981 982
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
983
                    proto::OpDesc desc;
Y
Yu Yang 已提交
984 985 986 987 988
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
989
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
990
                  })
991
      .def("run",
992
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
993 994 995
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
996
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
997 998 999 1000 1001
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1002 1003 1004 1005 1006 1007 1008
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1009 1010
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1011
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1012
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1013 1014 1015 1016
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1017

F
fengjiayi 已提交
1018
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1019
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1020
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
1021
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
1022
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1023 1024
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1025
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1026 1027
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1028
      });
S
sneaxiy 已提交
1029

D
dzhwinter 已提交
1030
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1031
  m.def("init_glog", framework::InitGLOG);
1032
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1033 1034
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1035

1036
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1037
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1038
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1039
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1040
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1041 1042 1043 1044 1045 1046
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1047

1048
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1049
  m.def("get_fetch_variable", framework::GetFetchVariable);
1050
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1051

X
Xin Pan 已提交
1052 1053
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1054 1055 1056 1057 1058
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1059

Y
Yu Yang 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
        
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1079 1080
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1091 1092 1093 1094 1095 1096
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1111

D
dzhwinter 已提交
1112 1113 1114
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1115
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1116
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1117
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1118

P
peizhilin 已提交
1119
#ifndef _WIN32
D
dangqingqing 已提交
1120 1121 1122
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1123
#endif
P
peizhilin 已提交
1124
#endif
Y
Yu Yang 已提交
1125

1126 1127 1128 1129
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1130
      .value("kAll", platform::ProfilerState::kAll)
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1144
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1145
  m.def("reset_profiler", platform::ResetProfiler);
1146
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1147 1148 1149
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1150

1151 1152
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1153
      .def("has", &ir::Pass::Has)
1154 1155 1156
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1157
           })
1158
      .def(
1159
          "set",
1160 1161 1162
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1163 1164
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1165 1166
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1167
        self.Apply(graph.get());
F
flame 已提交
1168
      });
1169

X
fix  
Xin Pan 已提交
1170 1171
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1186
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1187

Y
yuyang18 已提交
1188
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1189 1190 1191 1192
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1204 1205 1206

        )DOC");

Y
yuyang18 已提交
1207
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1208 1209 1210 1211 1212
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1223
      .def_property(
1224 1225 1226 1227
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1228 1229 1230 1231
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1232 1233 1234 1235 1236
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1237 1238 1239 1240
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1241 1242 1243 1244 1245 1246 1247
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1259
              )DOC")
Q
Qiao Longfei 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1271 1272 1273 1274 1275
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1276

Y
yuyang18 已提交
1277
  exec_strategy.def_property(
Y
yuyang18 已提交
1278 1279 1280 1281 1282 1283 1284
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1285 1286
      });

C
chengduo 已提交
1287 1288 1289 1290
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1302
)DOC");
Y
yuyang18 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1319
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1320
            self.reduce_ = strategy;
C
chengduo 已提交
1321 1322 1323 1324 1325 1326 1327
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1328 1329 1330 1331 1332
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1333
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1334
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1335 1336 1337 1338 1339 1340
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1341 1342 1343 1344
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1345
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1346
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1347 1348 1349 1350
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1351 1352 1353 1354 1355 1356
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1357
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1367
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1368 1369
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1370
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1371 1372 1373 1374 1375 1376
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1389 1390 1391 1392 1393 1394
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1395
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1396 1397 1398 1399 1400
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
                      Default False.)DOC")
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1452 1453 1454
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1465 1466 1467 1468
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1469 1470 1471
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1472
      .def_property(
D
dzhwinter 已提交
1473 1474 1475
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1476 1477 1478 1479
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1480 1481 1482 1483
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1484 1485 1486 1487
      .def_property(
          "cache_expected_kernel",
          [](const BuildStrategy &self) { return self.cache_expected_kernel_; },
          [](BuildStrategy &self, bool b) { self.cache_expected_kernel_ = b; })
1488
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1489
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1490 1491 1492 1493 1494
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1495 1496

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1497
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1498
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1499
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1500 1501 1502 1503
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1504 1505 1506 1507 1508
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1509 1510 1511
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1512 1513 1514 1515
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1516 1517 1518 1519 1520 1521
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1522

1523
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1524
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1525
  BindFleetWrapper(&m);
W
wopeizl 已提交
1526
#ifndef _WIN32
D
dongdaxiang 已提交
1527
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1528
#endif
F
flame 已提交
1529 1530
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1531
  BindInferenceApi(&m);
1532
  BindDataset(&m);
1533 1534 1535

  py::module lite = m.def_submodule("lite", "submodule lite");
  BindLite(&lite);
L
Luo Tao 已提交
1536
}
1537
}  // namespace pybind
1538
}  // namespace paddle