pybind.cc 57.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/garbage_collector.h"
28
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
29 30 31
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/op_info.h"
33
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
34
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
36
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
39
#include "paddle/fluid/framework/version.h"
40
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
41
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
42
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
43
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
44
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
47
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/platform/enforce.h"
49
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
52
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
55
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
56
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
57
#include "paddle/fluid/pybind/ir.h"
58 59
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
60
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
61
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
63

64
#include "paddle/fluid/string/to_string.h"
65

D
Dong Zhihong 已提交
66
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
67
#ifndef _WIN32
Y
Yi Wang 已提交
68
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
69
#endif
Y
Yi Wang 已提交
70 71
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
72 73
#endif

M
minqiyang 已提交
74 75
#include "pybind11/stl.h"

76 77 78 79
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
80 81 82
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

83
namespace paddle {
84
namespace pybind {
85
bool IsCompiledWithCUDA() {
86
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
87 88 89 90 91 92
  return false;
#else
  return true;
#endif
}

93 94 95 96 97 98 99 100
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

101 102 103 104 105 106 107 108
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

109
bool IsCompiledWithBrpc() {
110
#ifndef PADDLE_WITH_DISTRIBUTE
111 112
  return false;
#endif
113 114 115 116 117 118

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
119 120
}

Y
update  
Yancey1989 已提交
121
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
122
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
123 124 125 126 127 128
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
129 130 131 132 133 134 135 136 137 138
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

139
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
140 141 142
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
143
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
144

145
  m.doc() = "C++ core of PaddlePaddle";
146

147 148 149 150
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

151
  BindException(&m);
Y
Yu Yang 已提交
152

S
sneaxiy 已提交
153
  m.def(
S
sneaxiy 已提交
154
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
155 156 157 158
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
159 160 161
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
162 163 164
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
165
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
166

S
sneaxiy 已提交
167 168 169
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

170 171 172 173 174 175 176
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
177
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
178 179
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
180
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
181

M
minqiyang 已提交
182
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
183 184 185 186 187 188 189 190
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
191
      .def("_run_backward",
X
Xin Pan 已提交
192
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
193
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
194
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
195
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
196
      .def("_grad_ivar",
M
minqiyang 已提交
197
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
198
           py::return_value_policy::reference)
M
minqiyang 已提交
199
      .def("_copy_to",
P
Paddle CI 已提交
200
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
201 202 203 204 205
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
206
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
207
      .def("_copy_to",
P
Paddle CI 已提交
208
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
209 210 211 212 213
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
214
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
215
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
216
           py::return_value_policy::reference)
217 218 219
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
220
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
221 222 223 224
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
225

226
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
227
      .def(py::init<const std::string &>())
228 229 230 231
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
232 233 234 235 236 237 238 239 240 241
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
242 243 244 245 246 247
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
248
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
249
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
250 251 252 253 254 255
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
256 257
          py::return_value_policy::reference);

X
Xin Pan 已提交
258
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
259
  layer.def(py::init<>())
X
Xin Pan 已提交
260 261 262
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
263
      });
X
Xin Pan 已提交
264

X
polish  
Xin Pan 已提交
265
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
266
      .def(py::init<>())
X
Xin Pan 已提交
267 268
      .def_static(
          "apply",
X
Xin Pan 已提交
269
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
270
              -> std::vector<imperative::VarBase *> {
271 272 273 274 275 276 277 278 279 280 281
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
282 283
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
284 285 286 287 288
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
289

290 291
  BindTracer(&m);

292 293 294
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
S
sneaxiy 已提交
295 296
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
297
      .def("_get_dims",
298
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
299
      .def("_set_dims",
Q
qijun 已提交
300
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
301
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
302
           })
Y
yuyang18 已提交
303
      .def("_set_layout",
D
dzhwinter 已提交
304 305 306
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
307
      .def("_alloc_float",
D
dzhwinter 已提交
308
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
309
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
310
           })
Y
yuyang18 已提交
311
      .def("_alloc_float",
Y
Yu Yang 已提交
312
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
313
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
314
           })
Y
yuyang18 已提交
315
      .def("_alloc_int",
Y
Yu Yang 已提交
316
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
317
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
318
           })
Y
yuyang18 已提交
319
      .def("_alloc_int",
D
dzhwinter 已提交
320
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
321
             self.mutable_data<int>(place);
Q
qijun 已提交
322
           })
Y
yuyang18 已提交
323
      .def("_alloc_int",
C
chengduoZH 已提交
324 325 326
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
327
      .def("_alloc_float",
C
chengduoZH 已提交
328 329 330
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
331 332
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
333
      .def("set", PyCPUTensorSetFromArray<double>)
334
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
335
      .def("set", PyCPUTensorSetFromArray<bool>)
336
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
337
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
338
      .def("set", PyCPUTensorSetFromArray<int8_t>)
339
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
340 341
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
342
      .def("set", PyCUDATensorSetFromArray<double>)
343
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
344
      .def("set", PyCUDATensorSetFromArray<bool>)
345
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
346
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
347
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
348 349 350 351 352 353
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
354
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
355
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
356
#endif
357
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
358 359 360 361
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
362
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
363 364
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
365

X
Xin Pan 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
379
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
380
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
381
     columns, hence [5, 2].
X
Xin Pan 已提交
382 383 384

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
385 386
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
410 411
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
412 413 414 415 416 417 418 419 420 421 422 423 424 425
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
426
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
427 428 429 430 431
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
432
      .def("set_lod",
433
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
434
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
435
             LoD new_lod;
436 437
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
438 439
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
440
             self.set_lod(new_lod);
S
sneaxiy 已提交
441 442 443 444 445 446 447
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
463 464 465 466
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
467
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
468 469
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
470 471

           Args:
472
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
473
           )DOC")
474 475 476 477 478 479 480 481
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
482 483 484 485 486 487 488
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
489
      // Set above comments of set_lod.
490 491 492 493 494 495 496 497
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
498 499 500 501 502
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
503
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
504 505 506 507 508 509 510 511 512 513 514 515
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
W
wopeizl 已提交
516 517 518 519 520 521 522
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
523
           )DOC");
D
dangqingqing 已提交
524

Q
qijun 已提交
525 526 527 528 529 530 531 532 533 534 535
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
536 537
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
538 539
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
540 541 542 543 544 545 546 547 548
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
549
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
550
      .def("rows", [](SelectedRows &self) {
551 552 553 554 555
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
556
      });
Q
qijun 已提交
557

558
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
559 560 561

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
562
      .def(py::init<>())
563
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
564
      .def("set_int",
565 566
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
567 568 569 570 571 572 573
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
574
      .def("get_tensor",
575 576
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
577 578
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
579 580 581
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
582 583 584 585 586
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
587 588 589
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
590
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
591 592 593 594 595
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
596
#endif
Y
Refine  
Yu Yang 已提交
597 598 599 600 601
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
602
           py::return_value_policy::reference);
603

S
sneaxiy 已提交
604
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
605

S
sneaxiy 已提交
606 607 608 609
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
610

S
sneaxiy 已提交
611 612
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
613
      .def("push",
S
sneaxiy 已提交
614
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
615
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
616
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
617
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
618
           })
S
sneaxiy 已提交
619 620 621 622
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
623

S
sneaxiy 已提交
624
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
625 626 627 628 629 630
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
631
        py::return_value_policy::copy);
S
sneaxiy 已提交
632

S
sneaxiy 已提交
633
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
653 654
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
655
      .def("var",
656
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
657
             return self.Var(name);
Y
Yu Yang 已提交
658
           },
S
sneaxiy 已提交
659 660
           py::arg("name"),
           R"DOC(
661
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
662

663
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
664
           current scope, the variable would be created. Otherwise,
665
           return the existing variable.
S
sneaxiy 已提交
666 667

           Args:
668 669
               name (str): the variable name.

S
sneaxiy 已提交
670
           Returns:
671
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
672 673 674 675
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
676
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
677
           its parent scope. Return None if not found.
678

S
sneaxiy 已提交
679 680
           Args:
               name (str): the variable name.
681

S
sneaxiy 已提交
682
           Returns:
683
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
684
           )DOC",
685
           py::return_value_policy::reference)
686
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
687 688 689 690 691 692
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
693
           py::return_value_policy::reference)
S
sneaxiy 已提交
694 695 696
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
697 698
           )DOC")
      .def("_kids", &Scope::kids);
699

S
sneaxiy 已提交
700 701 702 703 704 705
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
706 707
        R"DOC(
        Create a new scope.
708

S
sneaxiy 已提交
709 710 711
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
712 713
        py::return_value_policy::reference);

Y
Yu Yang 已提交
714 715
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
716 717
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
718 719 720 721 722 723 724 725 726 727
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
728 729
    return ret_values;
  });
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
746
  m.def("prune", [](const ProgramDesc &origin,
747
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
748
    ProgramDesc prog_with_targets(origin);
749
    for (const auto &t : targets) {
750
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
751
    }
752
    proto::ProgramDesc pruned_desc;
753
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
754
    return new ProgramDesc(pruned_desc);
755
  });
756 757 758 759
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
760 761 762
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
763 764
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
765
  // clang-format off
Y
Yu Yang 已提交
766
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
767 768
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
769
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
770 771 772
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
773
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
774
                      -> paddle::platform::DeviceContext* {
775
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
776
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
777
#else
Q
qijun 已提交
778
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
779
#endif
C
chengduoZH 已提交
780 781 782 783 784 785 786 787 788 789 790
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
791
// clang-format on
P
peizhilin 已提交
792
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
793 794
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
795 796 797 798 799
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
        )DOC")
S
sneaxiy 已提交
800 801 802 803 804 805 806 807 808 809 810 811
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
812 813 814 815 816 817
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
818
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
819

820 821 822 823
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
        )DOC")
824
      .def(py::init<>())
S
sneaxiy 已提交
825 826 827 828 829 830
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
831
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
832

833 834 835 836
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
        )DOC")
S
sneaxiy 已提交
837
      .def("__init__",
S
sneaxiy 已提交
838
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
839 840 841
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
842
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
843
           })
S
sneaxiy 已提交
844 845 846 847 848 849 850 851
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
852 853
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
854 855
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
856 857 858 859 860
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
861 862
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
863 864 865 866 867 868
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
869 870 871 872
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
873 874
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
875 876 877 878 879
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
880
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
881
             self = gpu_place;
C
chengduoZH 已提交
882 883
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
884 885
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
886
      });
Y
Yu Yang 已提交
887

Y
Yu Yang 已提交
888 889 890
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
891
                    proto::OpDesc desc;
Y
Yu Yang 已提交
892 893 894 895 896
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
897
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
898
                  })
899
      .def("run",
900
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
901 902 903
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
904
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
905 906 907 908 909
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
910 911 912 913 914 915 916
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
917 918
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
919
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
920
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
921 922 923 924
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
925

F
fengjiayi 已提交
926
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
927
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
928
      .def("close", &Executor::Close)
S
sneaxiy 已提交
929
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
930 931
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
932
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
933 934
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
935
      });
S
sneaxiy 已提交
936

D
dzhwinter 已提交
937
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
938
  m.def("init_glog", framework::InitGLOG);
939
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
940 941
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
942

943
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
944
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
945
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
946
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
947
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
948 949 950 951 952 953
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
954

955
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
956
  m.def("get_fetch_variable", framework::GetFetchVariable);
957
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
958

X
Xin Pan 已提交
959 960
  m.def("_is_program_version_supported", IsProgramVersionSupported);

961 962 963 964 965
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
966

Y
Yu Yang 已提交
967 968 969 970 971 972 973 974 975
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
976
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
977 978
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
979 980 981 982 983 984 985 986 987 988
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
989 990 991 992 993 994 995
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
996

D
dzhwinter 已提交
997 998 999
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1000
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1001
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1002
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1003

P
peizhilin 已提交
1004
#ifndef _WIN32
D
dangqingqing 已提交
1005 1006 1007
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1008
#endif
P
peizhilin 已提交
1009
#endif
Y
Yu Yang 已提交
1010

1011 1012 1013 1014
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1015
      .value("kAll", platform::ProfilerState::kAll)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1029
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1030
  m.def("reset_profiler", platform::ResetProfiler);
1031
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1032 1033 1034
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1035

1036 1037
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1038
      .def("has", &ir::Pass::Has)
1039 1040 1041
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1042
           })
1043
      .def(
1044
          "set",
1045 1046 1047
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1048 1049
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1050 1051
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1052
        self.Apply(graph.get());
F
flame 已提交
1053
      });
1054

X
fix  
Xin Pan 已提交
1055 1056
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1071
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1072

Y
yuyang18 已提交
1073
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1074 1075 1076 1077
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1089 1090 1091

        )DOC");

Y
yuyang18 已提交
1092
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1093 1094 1095 1096 1097
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1108
      .def_property(
1109 1110 1111 1112
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1113 1114 1115 1116
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1117 1118 1119 1120 1121
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1122 1123 1124 1125
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1126 1127 1128 1129 1130 1131 1132
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1144 1145 1146 1147 1148 1149
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1150

Y
yuyang18 已提交
1151
  exec_strategy.def_property(
Y
yuyang18 已提交
1152 1153 1154 1155 1156 1157 1158
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1159 1160
      });

C
chengduo 已提交
1161 1162 1163 1164
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1176
)DOC");
Y
yuyang18 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1193
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1194
            self.reduce_ = strategy;
C
chengduo 已提交
1195 1196 1197 1198 1199 1200 1201
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1202 1203 1204 1205 1206
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1207
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1208
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1209 1210 1211 1212 1213 1214
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1215 1216 1217 1218
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1219
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1220
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1221 1222 1223 1224
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1225 1226 1227 1228 1229 1230
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1231
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1241
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1242 1243
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1244
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1245 1246 1247 1248 1249 1250
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1263 1264 1265 1266 1267 1268
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1269
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1270 1271 1272 1273 1274
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
C
chengduo 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1313 1314 1315 1316
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1317 1318 1319 1320
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1321
      .def_property(
D
dzhwinter 已提交
1322 1323 1324
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1325 1326 1327 1328
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1329
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1330
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1331 1332 1333 1334 1335
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1336 1337

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1338
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1339
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1340
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1341 1342 1343 1344
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1345 1346 1347 1348 1349
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1350 1351 1352 1353
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1354 1355 1356 1357 1358 1359
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1360

1361
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1362
  BindAsyncExecutor(&m);
F
flame 已提交
1363 1364
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1365
  BindInferenceApi(&m);
L
Luo Tao 已提交
1366
}
1367
}  // namespace pybind
1368
}  // namespace paddle