test_model.py 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
22
import paddle
23
from paddle import fluid
24
from paddle import to_tensor
C
cnn 已提交
25
from paddle.nn import Conv2D, Linear, ReLU, Sequential, Softmax
26

27 28
from paddle import Model
from paddle.static import InputSpec
29
from paddle.nn.layer.loss import CrossEntropyLoss
30
from paddle.metric import Accuracy
31 32
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
Y
yukavio 已提交
33 34
import paddle.vision.models as models
import paddle.fluid.dygraph.jit as jit
35
from paddle.io import DistributedBatchSampler, Dataset
36
from paddle.hapi.model import prepare_distributed_context
37 38
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
39 40


41
class LeNetDygraph(paddle.nn.Layer):
42

L
LielinJiang 已提交
43
    def __init__(self, num_classes=10):
44 45
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
46 47 48 49 50
        self.features = Sequential(Conv2D(1, 6, 3, stride=1, padding=1), ReLU(),
                                   paddle.fluid.dygraph.Pool2D(2, 'max', 2),
                                   Conv2D(6, 16, 5, stride=1, padding=0),
                                   ReLU(),
                                   paddle.fluid.dygraph.Pool2D(2, 'max', 2))
51 52

        if num_classes > 0:
53 54
            self.fc = Sequential(Linear(400, 120), Linear(120, 84),
                                 Linear(84, 10))
55 56 57 58 59 60 61 62 63 64

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


65
class ModelInner(paddle.nn.Layer):
66

67 68 69 70 71 72 73 74 75 76
    def __init__(self):
        super(ModelInner, self).__init__()
        self.fc = paddle.nn.Linear(3, 4)

    def forward(self, x):
        y = self.fc(x)
        return y, 0


class ModelOutter(paddle.nn.Layer):
77

78 79 80 81 82 83 84 85 86 87 88
    def __init__(self):
        super(ModelOutter, self).__init__()
        self.module1 = ModelInner()
        self.module2 = paddle.nn.Linear(4, 5)

    def forward(self, x):
        y, dummpy = self.module1(x)
        y = self.module2(y)
        return y, 3


89
class LeNetListInput(paddle.nn.Layer):
90

91 92 93 94 95 96
    def __init__(self, num_classes=10):
        super(LeNetListInput, self).__init__()
        self.num_classes = num_classes
        self.cov = Conv2D(1, 6, 3, stride=1, padding=1)
        for param in self.cov.parameters():
            param.trainable = False
97 98 99 100 101
        self.features = Sequential(self.cov, ReLU(),
                                   paddle.fluid.dygraph.Pool2D(2, 'max', 2),
                                   Conv2D(6, 16, 5, stride=1, padding=0),
                                   ReLU(),
                                   paddle.fluid.dygraph.Pool2D(2, 'max', 2))
102 103

        if num_classes > 0:
104 105
            self.fc = Sequential(Linear(400, 120), Linear(120, 84),
                                 Linear(84, 10))
106

107 108 109 110 111 112 113 114 115 116 117
    def forward(self, inputs):
        x = inputs[0]
        x = self.features(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs[1])
        return x


class LeNetDictInput(LeNetDygraph):
118

119 120 121 122 123 124 125 126 127
    def forward(self, inputs):
        x = self.features(inputs['x1'])

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs['x2'])
        return x


128
class MnistDataset(MNIST):
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
156 157
    optim = fluid.optimizer.Adam(learning_rate=0.001,
                                 parameter_list=model.parameters())
158 159 160
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
161
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
162 163 164 165 166 167 168 169 170 171 172 173 174
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

175 176 177
            cnt += (np.argmax(
                outputs.numpy(),
                -1)[:, np.newaxis] == labels.numpy()).astype('int').sum()
178 179 180 181 182 183 184

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
185

186 187 188
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
J
Jiangxinz 已提交
189
            cls().skipTest('module not tested when ONLY_CPU compling')
190
        cls.device = paddle.set_device('gpu')
191 192 193 194 195
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
196 197 198 199 200 201 202 203 204 205 206 207 208
        cls.test_dataset = MnistDataset(mode='test',
                                        return_label=False,
                                        sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(cls.train_dataset,
                                               places=cls.device,
                                               batch_size=64)
        cls.val_loader = fluid.io.DataLoader(cls.val_dataset,
                                             places=cls.device,
                                             batch_size=64)
        cls.test_loader = fluid.io.DataLoader(cls.test_dataset,
                                              places=cls.device,
                                              batch_size=64)
209 210

        seed = 333
C
cnn 已提交
211
        paddle.seed(seed)
L
Leo Chen 已提交
212
        paddle.framework.random._manual_program_seed(seed)
213 214 215 216 217 218 219

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

220 221
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
222

223 224 225
        cls.save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_model')
        if not os.path.exists(cls.save_dir):
            os.makedirs(cls.save_dir)
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

241 242 243 244 245 246
    def test_fit_dynamic_with_tuple_input(self):
        self.fit_with_tuple_input(True)

    def test_fit_static_with_tuple_input(self):
        self.fit_with_tuple_input(False)

247 248 249 250 251 252
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

253 254 255 256 257 258
    def test_fit_dynamic_with_num_iters(self):
        self.fit(True, num_iters=1)

    def test_fit_static_with_num_iters(self):
        self.fit(False, num_iters=1)

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

274
    def fit(self, dynamic, num_replicas=None, rank=None, num_iters=None):
275 276
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
C
cnn 已提交
277
        paddle.seed(seed)
L
Leo Chen 已提交
278
        paddle.framework.random._manual_program_seed(seed)
279

L
LielinJiang 已提交
280
        net = LeNet()
281 282
        optim_new = fluid.optimizer.Adam(learning_rate=0.001,
                                         parameter_list=net.parameters())
283
        model = Model(net, inputs=self.inputs, labels=self.labels)
284 285 286
        model.prepare(optim_new,
                      loss=CrossEntropyLoss(reduction="sum"),
                      metrics=Accuracy())
287 288 289 290 291
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

292 293 294 295 296
        model.fit(self.train_dataset,
                  batch_size=64,
                  shuffle=False,
                  num_iters=num_iters)

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        result = model.evaluate(self.val_dataset,
                                batch_size=64,
                                num_iters=num_iters)

        train_sampler = DistributedBatchSampler(self.train_dataset,
                                                batch_size=64,
                                                shuffle=False,
                                                num_replicas=num_replicas,
                                                rank=rank)
        val_sampler = DistributedBatchSampler(self.val_dataset,
                                              batch_size=64,
                                              shuffle=False,
                                              num_replicas=num_replicas,
                                              rank=rank)

        train_loader = fluid.io.DataLoader(self.train_dataset,
                                           batch_sampler=train_sampler,
                                           places=self.device,
                                           return_list=True)

        val_loader = fluid.io.DataLoader(self.val_dataset,
                                         batch_sampler=val_sampler,
                                         places=self.device,
                                         return_list=True)
321 322 323 324 325 326 327 328 329 330 331

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def fit_with_tuple_input(self, dynamic, num_replicas=None, rank=None):
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        paddle.seed(seed)
        paddle.framework.random._manual_program_seed(seed)

        net = LeNet()
332 333
        optim_new = fluid.optimizer.Adam(learning_rate=0.001,
                                         parameter_list=net.parameters())
334
        model = Model(net, inputs=tuple(self.inputs), labels=tuple(self.labels))
335 336 337
        model.prepare(optim_new,
                      loss=CrossEntropyLoss(reduction="sum"),
                      metrics=Accuracy())
338 339 340 341 342
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        train_sampler = DistributedBatchSampler(self.train_dataset,
                                                batch_size=64,
                                                shuffle=False,
                                                num_replicas=num_replicas,
                                                rank=rank)
        val_sampler = DistributedBatchSampler(self.val_dataset,
                                              batch_size=64,
                                              shuffle=False,
                                              num_replicas=num_replicas,
                                              rank=rank)

        train_loader = fluid.io.DataLoader(self.train_dataset,
                                           batch_sampler=train_sampler,
                                           places=self.device,
                                           return_list=True)

        val_loader = fluid.io.DataLoader(self.val_dataset,
                                         batch_sampler=val_sampler,
                                         places=self.device,
                                         return_list=True)
363 364 365 366 367 368

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
369 370
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
371 372 373 374
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

375 376 377
        sampler = DistributedBatchSampler(self.val_dataset,
                                          batch_size=64,
                                          shuffle=False)
378

379 380 381 382
        val_loader = fluid.io.DataLoader(self.val_dataset,
                                         batch_sampler=sampler,
                                         places=self.device,
                                         return_list=True)
383 384 385 386 387 388 389

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
390 391
        model = Model(LeNet(), self.inputs)
        model.prepare()
392
        model.load(self.weight_path)
393 394 395
        output = model.predict(self.test_dataset,
                               batch_size=64,
                               stack_outputs=True)
396 397 398 399 400
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

401 402 403
        sampler = DistributedBatchSampler(self.test_dataset,
                                          batch_size=64,
                                          shuffle=False)
404

405 406 407 408
        test_loader = fluid.io.DataLoader(self.test_dataset,
                                          batch_sampler=sampler,
                                          places=self.device,
                                          return_list=True)
409 410 411 412 413

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None

414 415 416 417 418 419
    def test_predict_without_inputs(self):
        fluid.enable_dygraph(self.device)
        model = Model(LeNet())
        model.prepare()
        model.load(self.weight_path)
        model._inputs = None
420 421 422
        output = model.predict(self.test_dataset,
                               batch_size=64,
                               stack_outputs=True)
423 424 425
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
        fluid.disable_dygraph()

426 427 428
    def test_summary_gpu(self):
        paddle.disable_static(self.device)
        rnn = paddle.nn.LSTM(16, 32, 2)
429 430
        params_info = paddle.summary(rnn, [(-1, 23, 16),
                                           ((2, None, 32), (2, -1, 32))])
431

432

433
class MyModel(paddle.nn.Layer):
434

L
LielinJiang 已提交
435
    def __init__(self):
436
        super(MyModel, self).__init__()
437
        self._fc = Linear(20, 10)
438 439 440 441 442 443

    def forward(self, x):
        y = self._fc(x)
        return y


444
class MyDataset(Dataset):
445

446 447 448 449 450 451 452 453
    def __getitem__(self, idx):
        return np.random.random(size=(20,)).astype(np.float32), \
               np.random.randint(0, 10, size=(1,)).astype(np.int64)

    def __len__(self):
        return 40


454
class TestModelFunction(unittest.TestCase):
455

456
    def set_seed(self, seed=1024):
C
cnn 已提交
457
        paddle.seed(seed)
L
Leo Chen 已提交
458
        paddle.framework.random._manual_program_seed(seed)
459 460 461 462 463 464 465 466 467

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
468
            m = MyModel()
469 470 471
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
472 473
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
474 475 476 477 478 479 480 481 482
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
483
            device = paddle.set_device('cpu')
484 485 486
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
487
            net = MyModel()
488
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
489
                                         parameter_list=net.parameters())
490

491 492
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
493
            model = Model(net, inputs, labels)
494
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
495 496 497 498
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

499
    def test_test_batch(self):
500 501 502 503 504 505 506 507
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
508
            output = m(to_tensor(data))
509 510 511 512 513
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
514
            device = paddle.set_device('cpu')
515 516
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
517
            net = MyModel()
518
            inputs = [InputSpec([None, dim], 'float32', 'x')]
519 520
            model = Model(net, inputs)
            model.prepare()
521
            out, = model.predict_batch([data])
522

523
            np.testing.assert_allclose(out, ref, rtol=1e-6)
524 525 526
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
527 528 529
        path = os.path.join(tempfile.mkdtemp(), '.cache_test_save_load')
        if not os.path.exists(path):
            os.makedirs(path)
530
        for dynamic in [True, False]:
531
            device = paddle.set_device('cpu')
532
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
533
            net = MyModel()
534 535
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
536
            optim = fluid.optimizer.SGD(learning_rate=0.001,
537 538
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
539 540
            model.prepare(optimizer=optim,
                          loss=CrossEntropyLoss(reduction="sum"))
541 542
            model.save(path)
            model.load(path)
543
            fluid.disable_dygraph() if dynamic else None
544
        shutil.rmtree(path)
545

546 547
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
548 549 550 551 552

        path = os.path.join(tempfile.mkdtemp(), '.cache_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)

553 554 555 556 557 558
        for new_optimizer in [True, False]:
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
559 560
                optim = paddle.optimizer.Adam(learning_rate=0.001,
                                              parameters=net.parameters())
561
            else:
562 563
                optim = fluid.optimizer.Adam(learning_rate=0.001,
                                             parameter_list=net.parameters())
564
            model = Model(net, inputs, labels)
565 566
            model.prepare(optimizer=optim,
                          loss=CrossEntropyLoss(reduction="sum"))
567
            model.fit(mnist_data, batch_size=64, verbose=0)
568 569
            model.save(path)
            model.load(path)
570
            paddle.enable_static()
571
        shutil.rmtree(path)
572

573
    def test_dynamic_save_static_load(self):
574 575 576 577
        path = os.path.join(tempfile.mkdtemp(),
                            '.cache_dynamic_save_static_load')
        if not os.path.exists(path):
            os.makedirs(path)
578
        # dynamic saving
579
        device = paddle.set_device('cpu')
580
        fluid.enable_dygraph(device)
581
        model = Model(MyModel())
582 583
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
584
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
585
        model.save(path)
586
        fluid.disable_dygraph()
587

588 589
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
590
        model = Model(MyModel(), inputs, labels)
591 592
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
593
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
594
        model.load(path)
595 596 597
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
598 599 600 601
        path = os.path.join(tempfile.mkdtemp(),
                            '.cache_test_static_save_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)
L
LielinJiang 已提交
602
        net = MyModel()
603 604
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
605
        optim = fluid.optimizer.SGD(learning_rate=0.001,
606 607
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
608
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
609
        model.save(path)
610

611
        device = paddle.set_device('cpu')
612 613
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
614
        net = MyModel()
615 616
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
617
        optim = fluid.optimizer.SGD(learning_rate=0.001,
618 619
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
620
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
621
        model.load(path)
622 623 624 625 626
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
627
            device = paddle.set_device('cpu')
628
            fluid.enable_dygraph(device) if dynamic else None
629
            net = MyModel()
630
            inputs = [InputSpec([None, 20], 'float32', 'x')]
631 632
            model = Model(net, inputs)
            model.prepare()
633 634 635 636 637
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
638
    def test_summary(self):
639

L
LielinJiang 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

659 660
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
661
            model.summary(input_size=(20), dtype='float32')
662

663 664 665
    def test_summary_non_tensor(self):
        paddle.summary(ModelOutter(), input_size=(-1, 3))

L
LielinJiang 已提交
666
    def test_summary_nlp(self):
667

668 669 670 671 672 673
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

L
LielinJiang 已提交
674 675 676 677 678
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
679

L
LielinJiang 已提交
680
        rnn = paddle.nn.LSTM(16, 32, 2)
681 682
        params_info = paddle.summary(rnn, [(-1, 23, 16),
                                           ((2, None, 32), (2, -1, 32))])
683 684 685 686 687 688 689 690 691 692 693 694
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.GRU(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)
L
LielinJiang 已提交
695

696
    def test_summary_input(self):
697 698 699 700 701 702
        paddle.enable_static()
        mymodel = MyModel()
        input_data = paddle.rand([1, 20])
        paddle.summary(mymodel, input=input_data)
        paddle.disable_static()

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        input_data = paddle.rand([4, 23, 16])
        paddle.summary(rnn, input=input_data)

        lenet_List_input = LeNetListInput()
        input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
        paddle.summary(lenet_List_input, input=input_data)

        lenet_dict_input = LeNetDictInput()
        input_data = {
            'x1': paddle.rand([1, 1, 28, 28]),
            'x2': paddle.rand([1, 400])
        }
        paddle.summary(lenet_dict_input, input=input_data)

L
LielinJiang 已提交
718 719 720 721 722
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
723 724 725
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
726
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
727 728 729 730 731 732 733

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
734
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
735

Y
yukavio 已提交
736
    def test_static_flops(self):
J
Jiabin Yang 已提交
737 738
        if paddle.fluid.framework._in_eager_without_dygraph_check():
            return
Y
yukavio 已提交
739 740 741 742 743 744 745 746 747 748 749 750
        paddle.disable_static()
        net = models.__dict__['mobilenet_v2'](pretrained=False)
        inputs = paddle.randn([1, 3, 224, 224])
        static_program = jit._trace(net, inputs=[inputs])[1]
        paddle.flops(static_program, [1, 3, 224, 224], print_detail=True)

    def test_dynamic_flops(self):
        net = models.__dict__['mobilenet_v2'](pretrained=False)

        def customize_dropout(m, x, y):
            m.total_ops += 0

751 752 753
        paddle.flops(net, [1, 3, 224, 224],
                     custom_ops={paddle.nn.Dropout: customize_dropout},
                     print_detail=True)
Y
yukavio 已提交
754

755
    def test_dynamic_flops_with_multiple_outputs(self):
756 757 758 759
        net = paddle.nn.MaxPool2D(kernel_size=2,
                                  stride=2,
                                  padding=0,
                                  return_mask=True)
760 761 762 763

        def customize_dropout(m, x, y):
            m.total_ops += 0

764 765 766
        paddle.flops(net, [1, 2, 32, 32],
                     custom_ops={paddle.nn.Dropout: customize_dropout},
                     print_detail=True)
767

768
    def test_export_deploy_model(self):
769
        self.set_seed()
770
        np.random.seed(201)
771 772 773 774 775 776

        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_export_deploy_model')
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

777
        for dynamic in [True, False]:
778
            paddle.disable_static() if dynamic else None
779 780
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
781
            net = LeNet()
782
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
783 784
            model = Model(net, inputs)
            model.prepare()
785

786 787
            tensor_img = np.array(np.random.random((1, 1, 28, 28)),
                                  dtype=np.float32)
788

789
            model.save(save_dir, training=False)
790
            ori_results = model.predict_batch(tensor_img)
791
            fluid.disable_dygraph() if dynamic else None
792

793 794
            place = fluid.CPUPlace(
            ) if not fluid.is_compiled_with_cuda() else fluid.CUDAPlace(0)
795 796 797
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
798 799 800
                [inference_program, feed_target_names,
                 fetch_targets] = (paddle.static.io.load_inference_model(
                     path_prefix=save_dir, executor=exe))
801 802 803
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
804 805 806 807
                np.testing.assert_allclose(results,
                                           ori_results,
                                           rtol=1e-5,
                                           atol=1e-6)
808

809
            paddle.enable_static()
810

811 812
        shutil.rmtree(save_dir)

L
LiuChiachi 已提交
813
    def test_dygraph_export_deploy_model_about_inputs(self):
J
Jiaqi Liu 已提交
814 815
        self.set_seed()
        np.random.seed(201)
816 817
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
818
        # without inputs
819 820 821 822
        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_dygraph_export_deploy')
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
823
        for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
824 825
            net = LeNet()
            model = Model(net)
826 827 828 829
            optim = fluid.optimizer.Adam(learning_rate=0.001,
                                         parameter_list=model.parameters())
            model.prepare(optimizer=optim,
                          loss=CrossEntropyLoss(reduction="sum"))
830 831 832
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
833 834
                img = np.array(np.random.random((1, 1, 28, 28)),
                               dtype=np.float32)
835 836 837 838 839 840
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
841
                    model.predict_batch([img])
842 843

            model.save(save_dir, training=False)
844
        shutil.rmtree(save_dir)
L
LiuChiachi 已提交
845
        # with inputs, and the type of inputs is InputSpec
846 847
        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_dygraph_export_deploy_2')
L
LiuChiachi 已提交
848 849 850 851 852
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
853 854
        optim = fluid.optimizer.Adam(learning_rate=0.001,
                                     parameter_list=model.parameters())
L
LiuChiachi 已提交
855 856 857
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
858

L
lyuwenyu 已提交
859 860 861 862 863 864 865 866 867
    def test_accumulate(self, ):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
        net = MyModel()
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=net.parameters())
        inputs = [InputSpec([None, dim], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
lyuwenyu 已提交
868

L
lyuwenyu 已提交
869 870
        for amp_cfg in [None, 'O1']:
            model = Model(net, inputs, labels)
871 872 873
            model.prepare(optim,
                          loss=CrossEntropyLoss(reduction="sum"),
                          amp_configs=amp_cfg)
L
lyuwenyu 已提交
874 875 876 877 878 879 880 881
            losses, grads = [], []
            for stat in [False, False, True]:
                loss, = model.train_batch([data], [label], update=stat)
                losses.append(loss)
                grads.append([p.grad.numpy() for p in net.parameters()])

            for grad1, grad2, grad3 in zip(*grads):
                np.testing.assert_almost_equal(grad1 * 2, grad2, decimal=4)
882 883 884
                np.testing.assert_almost_equal(grad3,
                                               np.zeros_like(grad3),
                                               decimal=4)
L
lyuwenyu 已提交
885 886 887

            np.testing.assert_almost_equal(losses[0], losses[1], decimal=4)
            np.testing.assert_almost_equal(losses[0], losses[2], decimal=4)
L
lyuwenyu 已提交
888

889

890
class TestModelWithLRScheduler(unittest.TestCase):
891

892 893 894 895
    def test_fit_by_step(self):
        base_lr = 1e-3
        boundaries = [5, 8]

896 897 898 899 900 901 902 903 904 905 906 907
        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=4,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
908 909 910 911
            optimizer = paddle.optimizer.Momentum(learning_rate=learning_rate,
                                                  weight_decay=weight_decay,
                                                  momentum=momentum,
                                                  parameters=parameters)
912 913
            return optimizer

914
        # dynamic test
915 916 917 918 919 920 921 922 923 924 925 926
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

927 928
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))
929
        # static test
930 931
        paddle.enable_static()

932 933 934 935 936 937 938 939 940 941
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))

    def test_fit_by_epoch(self):
        base_lr = 1e-3
        boundaries = [5, 8]
        epochs = 10
        wamup_epochs = 4

        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=wamup_epochs,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
963 964 965 966
            optimizer = paddle.optimizer.Momentum(learning_rate=learning_rate,
                                                  weight_decay=weight_decay,
                                                  momentum=momentum,
                                                  parameters=parameters)
967 968 969 970 971 972 973 974 975 976 977 978 979 980
            return optimizer

        # dynamic test
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

981 982
        lr_scheduler_callback = paddle.callbacks.LRScheduler(by_step=False,
                                                             by_epoch=True)
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))
        # static test
        paddle.enable_static()

        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

1010 1011
        lr_scheduler_callback = paddle.callbacks.LRScheduler(by_step=False,
                                                             by_epoch=True)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))

1028

1029
class TestRaiseError(unittest.TestCase):
1030

1031
    def test_input_without_name(self):
L
LielinJiang 已提交
1032
        net = MyModel()
1033 1034
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
1035 1036 1037
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

1038 1039 1040 1041 1042 1043 1044 1045 1046
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
1047
        save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_save_infer')
1048 1049 1050 1051 1052 1053
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
1054
        shutil.rmtree(save_dir)
1055

1056 1057 1058 1059 1060 1061 1062
    def test_save_infer_model_without_file_prefix(self):
        paddle.enable_static()
        net = LeNet()
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        model = Model(net, inputs)
        model.prepare()
        path = ""
1063 1064
        tensor_img = np.array(np.random.random((1, 1, 28, 28)),
                              dtype=np.float32)
1065 1066 1067
        with self.assertRaises(ValueError):
            model.save(path, training=False)

1068

1069 1070
if __name__ == '__main__':
    unittest.main()