test_model.py 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
C
cnn 已提交
28
from paddle.nn import Conv2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
Y
yukavio 已提交
36 37
import paddle.vision.models as models
import paddle.fluid.dygraph.jit as jit
38
from paddle.io import DistributedBatchSampler, Dataset
39
from paddle.hapi.model import prepare_distributed_context
40 41
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
42 43


44
class LeNetDygraph(paddle.nn.Layer):
L
LielinJiang 已提交
45
    def __init__(self, num_classes=10):
46 47 48
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
C
cnn 已提交
49
            Conv2D(
50
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
51
            ReLU(),
52
            paddle.fluid.dygraph.Pool2D(2, 'max', 2),
C
cnn 已提交
53
            Conv2D(
54
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
55
            ReLU(),
56
            paddle.fluid.dygraph.Pool2D(2, 'max', 2))
57 58 59

        if num_classes > 0:
            self.fc = Sequential(
L
LielinJiang 已提交
60
                Linear(400, 120), Linear(120, 84), Linear(84, 10))
61 62 63 64 65 66 67 68 69 70

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
class ModelInner(paddle.nn.Layer):
    def __init__(self):
        super(ModelInner, self).__init__()
        self.fc = paddle.nn.Linear(3, 4)

    def forward(self, x):
        y = self.fc(x)
        return y, 0


class ModelOutter(paddle.nn.Layer):
    def __init__(self):
        super(ModelOutter, self).__init__()
        self.module1 = ModelInner()
        self.module2 = paddle.nn.Linear(4, 5)

    def forward(self, x):
        y, dummpy = self.module1(x)
        y = self.module2(y)
        return y, 3


93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
class LeNetListInput(LeNetDygraph):
    def forward(self, inputs):
        x = inputs[0]
        x = self.features(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs[1])
        return x


class LeNetDictInput(LeNetDygraph):
    def forward(self, inputs):
        x = self.features(inputs['x1'])

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs['x2'])
        return x


114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
146
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
J
Jiangxinz 已提交
172
            cls().skipTest('module not tested when ONLY_CPU compling')
173
        cls.device = paddle.set_device('gpu')
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
C
cnn 已提交
190
        paddle.seed(seed)
L
Leo Chen 已提交
191
        paddle.framework.random._manual_program_seed(seed)
192 193 194 195 196 197 198

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

199 200
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
201

202 203 204
        cls.save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_model')
        if not os.path.exists(cls.save_dir):
            os.makedirs(cls.save_dir)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

220 221 222 223 224 225
    def test_fit_dynamic_with_tuple_input(self):
        self.fit_with_tuple_input(True)

    def test_fit_static_with_tuple_input(self):
        self.fit_with_tuple_input(False)

226 227 228 229 230 231
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

232 233 234 235 236 237
    def test_fit_dynamic_with_num_iters(self):
        self.fit(True, num_iters=1)

    def test_fit_static_with_num_iters(self):
        self.fit(False, num_iters=1)

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

253
    def fit(self, dynamic, num_replicas=None, rank=None, num_iters=None):
254 255
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
C
cnn 已提交
256
        paddle.seed(seed)
L
Leo Chen 已提交
257
        paddle.framework.random._manual_program_seed(seed)
258

L
LielinJiang 已提交
259
        net = LeNet()
260
        optim_new = fluid.optimizer.Adam(
261 262
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
263 264
        model.prepare(
            optim_new,
265
            loss=CrossEntropyLoss(reduction="sum"),
266
            metrics=Accuracy())
267 268 269 270 271
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

272 273 274 275 276 277 278 279
        model.fit(self.train_dataset,
                  batch_size=64,
                  shuffle=False,
                  num_iters=num_iters)

        result = model.evaluate(
            self.val_dataset, batch_size=64, num_iters=num_iters)

280
        train_sampler = DistributedBatchSampler(
281 282 283 284 285
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
286
        val_sampler = DistributedBatchSampler(
287 288 289 290 291
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
292 293 294 295 296

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def fit_with_tuple_input(self, dynamic, num_replicas=None, rank=None):
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        paddle.seed(seed)
        paddle.framework.random._manual_program_seed(seed)

        net = LeNet()
        optim_new = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=tuple(self.inputs), labels=tuple(self.labels))
        model.prepare(
            optim_new,
            loss=CrossEntropyLoss(reduction="sum"),
            metrics=Accuracy())
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
        val_sampler = DistributedBatchSampler(
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
344 345 346 347 348 349 350 351 352 353 354 355 356
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
357 358
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
378 379
        model = Model(LeNet(), self.inputs)
        model.prepare()
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None

401 402 403 404 405 406 407 408 409 410 411
    def test_predict_without_inputs(self):
        fluid.enable_dygraph(self.device)
        model = Model(LeNet())
        model.prepare()
        model.load(self.weight_path)
        model._inputs = None
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
        fluid.disable_dygraph()

412 413 414 415 416 417
    def test_summary_gpu(self):
        paddle.disable_static(self.device)
        rnn = paddle.nn.LSTM(16, 32, 2)
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])

418

419
class MyModel(paddle.nn.Layer):
L
LielinJiang 已提交
420
    def __init__(self):
421
        super(MyModel, self).__init__()
422
        self._fc = Linear(20, 10)
423 424 425 426 427 428

    def forward(self, x):
        y = self._fc(x)
        return y


429 430 431 432 433 434 435 436 437
class MyDataset(Dataset):
    def __getitem__(self, idx):
        return np.random.random(size=(20,)).astype(np.float32), \
               np.random.randint(0, 10, size=(1,)).astype(np.int64)

    def __len__(self):
        return 40


438 439
class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
C
cnn 已提交
440
        paddle.seed(seed)
L
Leo Chen 已提交
441
        paddle.framework.random._manual_program_seed(seed)
442 443 444 445 446 447 448 449 450

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
451
            m = MyModel()
452 453 454
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
455 456
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
457 458 459 460 461 462 463 464 465
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
466
            device = paddle.set_device('cpu')
467 468 469
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
470
            net = MyModel()
471
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
472
                                         parameter_list=net.parameters())
473

474 475
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
476
            model = Model(net, inputs, labels)
477
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
478 479 480 481
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

482
    def test_test_batch(self):
483 484 485 486 487 488 489 490
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
491
            output = m(to_tensor(data))
492 493 494 495 496
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
497
            device = paddle.set_device('cpu')
498 499
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
500
            net = MyModel()
501
            inputs = [InputSpec([None, dim], 'float32', 'x')]
502 503
            model = Model(net, inputs)
            model.prepare()
504
            out, = model.predict_batch([data])
505

506
            np.testing.assert_allclose(out, ref, rtol=1e-6)
507 508 509
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
510 511 512
        path = os.path.join(tempfile.mkdtemp(), '.cache_test_save_load')
        if not os.path.exists(path):
            os.makedirs(path)
513
        for dynamic in [True, False]:
514
            device = paddle.set_device('cpu')
515
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
516
            net = MyModel()
517 518
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
519
            optim = fluid.optimizer.SGD(learning_rate=0.001,
520 521
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
522
            model.prepare(
523
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
524 525
            model.save(path)
            model.load(path)
526
            fluid.disable_dygraph() if dynamic else None
527
        shutil.rmtree(path)
528

529 530
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
531 532 533 534 535

        path = os.path.join(tempfile.mkdtemp(), '.cache_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
        for new_optimizer in [True, False]:
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
551 552
            model.save(path)
            model.load(path)
553
            paddle.enable_static()
554
        shutil.rmtree(path)
555

556
    def test_dynamic_save_static_load(self):
557 558 559 560
        path = os.path.join(tempfile.mkdtemp(),
                            '.cache_dynamic_save_static_load')
        if not os.path.exists(path):
            os.makedirs(path)
561
        # dynamic saving
562
        device = paddle.set_device('cpu')
563
        fluid.enable_dygraph(device)
564
        model = Model(MyModel())
565 566
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
567
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
568
        model.save(path)
569
        fluid.disable_dygraph()
570

571 572
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
573
        model = Model(MyModel(), inputs, labels)
574 575
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
576
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
577
        model.load(path)
578 579 580
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
581 582 583 584
        path = os.path.join(tempfile.mkdtemp(),
                            '.cache_test_static_save_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)
L
LielinJiang 已提交
585
        net = MyModel()
586 587
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
588
        optim = fluid.optimizer.SGD(learning_rate=0.001,
589 590
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
591
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
592
        model.save(path)
593

594
        device = paddle.set_device('cpu')
595 596
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
597
        net = MyModel()
598 599
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
600
        optim = fluid.optimizer.SGD(learning_rate=0.001,
601 602
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
603
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
604
        model.load(path)
605 606 607 608 609
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
610
            device = paddle.set_device('cpu')
611
            fluid.enable_dygraph(device) if dynamic else None
612
            net = MyModel()
613
            inputs = [InputSpec([None, 20], 'float32', 'x')]
614 615
            model = Model(net, inputs)
            model.prepare()
616 617 618 619 620
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

641 642
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
643
            model.summary(input_size=(20), dtype='float32')
644

645 646 647
    def test_summary_non_tensor(self):
        paddle.summary(ModelOutter(), input_size=(-1, 3))

L
LielinJiang 已提交
648
    def test_summary_nlp(self):
649 650 651 652 653 654
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

L
LielinJiang 已提交
655 656 657 658 659
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
660

L
LielinJiang 已提交
661
        rnn = paddle.nn.LSTM(16, 32, 2)
662 663 664 665 666 667 668 669 670 671 672 673 674 675
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.GRU(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)
L
LielinJiang 已提交
676

677
    def test_summary_input(self):
678 679 680 681 682 683
        paddle.enable_static()
        mymodel = MyModel()
        input_data = paddle.rand([1, 20])
        paddle.summary(mymodel, input=input_data)
        paddle.disable_static()

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        input_data = paddle.rand([4, 23, 16])
        paddle.summary(rnn, input=input_data)

        lenet_List_input = LeNetListInput()
        input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
        paddle.summary(lenet_List_input, input=input_data)

        lenet_dict_input = LeNetDictInput()
        input_data = {
            'x1': paddle.rand([1, 1, 28, 28]),
            'x2': paddle.rand([1, 400])
        }
        paddle.summary(lenet_dict_input, input=input_data)

L
LielinJiang 已提交
699 700 701 702 703
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
704 705 706
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
707
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
708 709 710 711 712 713 714

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
715
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
716

Y
yukavio 已提交
717
    def test_static_flops(self):
J
Jiabin Yang 已提交
718 719
        if paddle.fluid.framework._in_eager_without_dygraph_check():
            return
Y
yukavio 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        paddle.disable_static()
        net = models.__dict__['mobilenet_v2'](pretrained=False)
        inputs = paddle.randn([1, 3, 224, 224])
        static_program = jit._trace(net, inputs=[inputs])[1]
        paddle.flops(static_program, [1, 3, 224, 224], print_detail=True)

    def test_dynamic_flops(self):
        net = models.__dict__['mobilenet_v2'](pretrained=False)

        def customize_dropout(m, x, y):
            m.total_ops += 0

        paddle.flops(
            net, [1, 3, 224, 224],
            custom_ops={paddle.nn.Dropout: customize_dropout},
            print_detail=True)

737 738 739 740 741 742 743 744 745 746 747 748
    def test_dynamic_flops_with_multiple_outputs(self):
        net = paddle.nn.MaxPool2D(
            kernel_size=2, stride=2, padding=0, return_mask=True)

        def customize_dropout(m, x, y):
            m.total_ops += 0

        paddle.flops(
            net, [1, 2, 32, 32],
            custom_ops={paddle.nn.Dropout: customize_dropout},
            print_detail=True)

749
    def test_export_deploy_model(self):
750
        self.set_seed()
751
        np.random.seed(201)
752 753 754 755 756 757

        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_export_deploy_model')
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

758
        for dynamic in [True, False]:
759
            paddle.disable_static() if dynamic else None
760 761
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
762
            net = LeNet()
763
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
764 765
            model = Model(net, inputs)
            model.prepare()
766

767 768
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
769

770
            model.save(save_dir, training=False)
771
            ori_results = model.predict_batch(tensor_img)
772
            fluid.disable_dygraph() if dynamic else None
773

774 775 776 777 778 779
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
780 781
                    paddle.static.io.load_inference_model(
                        path_prefix=save_dir, executor=exe))
782 783 784 785
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
786
                    results, ori_results, rtol=1e-5, atol=1e-6)
787

788
            paddle.enable_static()
789

790 791
        shutil.rmtree(save_dir)

L
LiuChiachi 已提交
792
    def test_dygraph_export_deploy_model_about_inputs(self):
J
Jiaqi Liu 已提交
793 794
        self.set_seed()
        np.random.seed(201)
795 796
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
797
        # without inputs
798 799 800 801
        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_dygraph_export_deploy')
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
802
        for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
            net = LeNet()
            model = Model(net)
            optim = fluid.optimizer.Adam(
                learning_rate=0.001, parameter_list=model.parameters())
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
                img = np.array(
                    np.random.random((1, 1, 28, 28)), dtype=np.float32)
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
820
                    model.predict_batch([img])
821 822

            model.save(save_dir, training=False)
823
        shutil.rmtree(save_dir)
L
LiuChiachi 已提交
824
        # with inputs, and the type of inputs is InputSpec
825 826
        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_dygraph_export_deploy_2')
L
LiuChiachi 已提交
827 828 829 830 831 832 833 834 835 836
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
        optim = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=model.parameters())
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
837

L
lyuwenyu 已提交
838 839 840 841 842 843 844 845 846
    def test_accumulate(self, ):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
        net = MyModel()
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=net.parameters())
        inputs = [InputSpec([None, dim], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
lyuwenyu 已提交
847

L
lyuwenyu 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
        for amp_cfg in [None, 'O1']:
            model = Model(net, inputs, labels)
            model.prepare(
                optim,
                loss=CrossEntropyLoss(reduction="sum"),
                amp_configs=amp_cfg)
            losses, grads = [], []
            for stat in [False, False, True]:
                loss, = model.train_batch([data], [label], update=stat)
                losses.append(loss)
                grads.append([p.grad.numpy() for p in net.parameters()])

            for grad1, grad2, grad3 in zip(*grads):
                np.testing.assert_almost_equal(grad1 * 2, grad2, decimal=4)
                np.testing.assert_almost_equal(
                    grad3, np.zeros_like(grad3), decimal=4)

            np.testing.assert_almost_equal(losses[0], losses[1], decimal=4)
            np.testing.assert_almost_equal(losses[0], losses[2], decimal=4)
L
lyuwenyu 已提交
867

868

869
class TestModelWithLRScheduler(unittest.TestCase):
870 871 872 873
    def test_fit_by_step(self):
        base_lr = 1e-3
        boundaries = [5, 8]

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=4,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

893
        # dynamic test
894 895 896 897 898 899 900 901 902 903 904 905
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

906 907
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))
908
        # static test
909 910
        paddle.enable_static()

911 912 913 914 915 916 917 918 919 920
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))

    def test_fit_by_epoch(self):
        base_lr = 1e-3
        boundaries = [5, 8]
        epochs = 10
        wamup_epochs = 4

        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=wamup_epochs,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

        # dynamic test
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True)

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))
        # static test
        paddle.enable_static()

        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True)

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))

1008

1009 1010
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
L
LielinJiang 已提交
1011
        net = MyModel()
1012 1013
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
1014 1015 1016
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

1017 1018 1019 1020 1021 1022 1023 1024 1025
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
1026
        save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_save_infer')
1027 1028 1029 1030 1031 1032
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
1033
        shutil.rmtree(save_dir)
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    def test_save_infer_model_without_file_prefix(self):
        paddle.enable_static()
        net = LeNet()
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        model = Model(net, inputs)
        model.prepare()
        path = ""
        tensor_img = np.array(
            np.random.random((1, 1, 28, 28)), dtype=np.float32)
        with self.assertRaises(ValueError):
            model.save(path, training=False)

1047

1048 1049
if __name__ == '__main__':
    unittest.main()