test_model.py 34.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
C
cnn 已提交
28
from paddle.nn import Conv2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
Y
yukavio 已提交
36 37
import paddle.vision.models as models
import paddle.fluid.dygraph.jit as jit
38
from paddle.io import DistributedBatchSampler, Dataset
39
from paddle.hapi.model import prepare_distributed_context
40 41
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
42 43


44
class LeNetDygraph(paddle.nn.Layer):
L
LielinJiang 已提交
45
    def __init__(self, num_classes=10):
46 47 48
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
C
cnn 已提交
49
            Conv2D(
50
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
51
            ReLU(),
52
            paddle.fluid.dygraph.Pool2D(2, 'max', 2),
C
cnn 已提交
53
            Conv2D(
54
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
55
            ReLU(),
56
            paddle.fluid.dygraph.Pool2D(2, 'max', 2))
57 58 59

        if num_classes > 0:
            self.fc = Sequential(
L
LielinJiang 已提交
60
                Linear(400, 120), Linear(120, 84), Linear(84, 10))
61 62 63 64 65 66 67 68 69 70

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
class LeNetListInput(LeNetDygraph):
    def forward(self, inputs):
        x = inputs[0]
        x = self.features(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs[1])
        return x


class LeNetDictInput(LeNetDygraph):
    def forward(self, inputs):
        x = self.features(inputs['x1'])

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs['x2'])
        return x


92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
124
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
J
Jiangxinz 已提交
150
            cls.skipTest('module not tested when ONLY_CPU compling')
151
        cls.device = paddle.set_device('gpu')
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
C
cnn 已提交
168
        paddle.seed(seed)
L
Leo Chen 已提交
169
        paddle.framework.random._manual_program_seed(seed)
170 171 172 173 174 175 176

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

177 178
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

196 197 198 199 200 201
    def test_fit_dynamic_with_tuple_input(self):
        self.fit_with_tuple_input(True)

    def test_fit_static_with_tuple_input(self):
        self.fit_with_tuple_input(False)

202 203 204 205 206 207
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

208 209 210 211 212 213
    def test_fit_dynamic_with_num_iters(self):
        self.fit(True, num_iters=1)

    def test_fit_static_with_num_iters(self):
        self.fit(False, num_iters=1)

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

229
    def fit(self, dynamic, num_replicas=None, rank=None, num_iters=None):
230 231
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
C
cnn 已提交
232
        paddle.seed(seed)
L
Leo Chen 已提交
233
        paddle.framework.random._manual_program_seed(seed)
234

L
LielinJiang 已提交
235
        net = LeNet()
236
        optim_new = fluid.optimizer.Adam(
237 238
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
239 240
        model.prepare(
            optim_new,
241
            loss=CrossEntropyLoss(reduction="sum"),
242
            metrics=Accuracy())
243 244 245 246 247
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

248 249 250 251 252 253 254 255
        model.fit(self.train_dataset,
                  batch_size=64,
                  shuffle=False,
                  num_iters=num_iters)

        result = model.evaluate(
            self.val_dataset, batch_size=64, num_iters=num_iters)

256
        train_sampler = DistributedBatchSampler(
257 258 259 260 261
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
262
        val_sampler = DistributedBatchSampler(
263 264 265 266 267
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
268 269 270 271 272

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def fit_with_tuple_input(self, dynamic, num_replicas=None, rank=None):
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        paddle.seed(seed)
        paddle.framework.random._manual_program_seed(seed)

        net = LeNet()
        optim_new = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=tuple(self.inputs), labels=tuple(self.labels))
        model.prepare(
            optim_new,
            loss=CrossEntropyLoss(reduction="sum"),
            metrics=Accuracy())
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
        val_sampler = DistributedBatchSampler(
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
320 321 322 323 324 325 326 327 328 329 330 331 332
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
333 334
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
354 355
        model = Model(LeNet(), self.inputs)
        model.prepare()
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None

377 378 379 380 381 382 383 384 385 386 387
    def test_predict_without_inputs(self):
        fluid.enable_dygraph(self.device)
        model = Model(LeNet())
        model.prepare()
        model.load(self.weight_path)
        model._inputs = None
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
        fluid.disable_dygraph()

388 389 390 391 392 393
    def test_summary_gpu(self):
        paddle.disable_static(self.device)
        rnn = paddle.nn.LSTM(16, 32, 2)
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])

394

395
class MyModel(paddle.nn.Layer):
L
LielinJiang 已提交
396
    def __init__(self):
397
        super(MyModel, self).__init__()
398
        self._fc = Linear(20, 10)
399 400 401 402 403 404

    def forward(self, x):
        y = self._fc(x)
        return y


405 406 407 408 409 410 411 412 413
class MyDataset(Dataset):
    def __getitem__(self, idx):
        return np.random.random(size=(20,)).astype(np.float32), \
               np.random.randint(0, 10, size=(1,)).astype(np.int64)

    def __len__(self):
        return 40


414 415
class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
C
cnn 已提交
416
        paddle.seed(seed)
L
Leo Chen 已提交
417
        paddle.framework.random._manual_program_seed(seed)
418 419 420 421 422 423 424 425 426

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
427
            m = MyModel()
428 429 430
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
431 432
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
433 434 435 436 437 438 439 440 441
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
442
            device = paddle.set_device('cpu')
443 444 445
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
446
            net = MyModel()
447
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
448
                                         parameter_list=net.parameters())
449

450 451
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
452
            model = Model(net, inputs, labels)
453
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
454 455 456 457
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

458
    def test_test_batch(self):
459 460 461 462 463 464 465 466
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
467
            output = m(to_tensor(data))
468 469 470 471 472
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
473
            device = paddle.set_device('cpu')
474 475
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
476
            net = MyModel()
477
            inputs = [InputSpec([None, dim], 'float32', 'x')]
478 479
            model = Model(net, inputs)
            model.prepare()
480
            out, = model.predict_batch([data])
481

482
            np.testing.assert_allclose(out, ref, rtol=1e-6)
483 484 485 486 487
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
488
            device = paddle.set_device('cpu')
489
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
490
            net = MyModel()
491 492
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
493
            optim = fluid.optimizer.SGD(learning_rate=0.001,
494 495
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
496
            model.prepare(
497
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
498 499 500 501 502
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
        for new_optimizer in [True, False]:
            path = tempfile.mkdtemp()
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            paddle.enable_static()

526 527
    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
528
        # dynamic saving
529
        device = paddle.set_device('cpu')
530
        fluid.enable_dygraph(device)
531
        model = Model(MyModel())
532 533
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
534
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
535 536
        model.save(path + '/test')
        fluid.disable_dygraph()
537

538 539
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
540
        model = Model(MyModel(), inputs, labels)
541 542
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
543
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
544 545 546 547 548 549
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

L
LielinJiang 已提交
550
        net = MyModel()
551 552
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
553
        optim = fluid.optimizer.SGD(learning_rate=0.001,
554 555
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
556
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
557 558
        model.save(path + '/test')

559
        device = paddle.set_device('cpu')
560 561
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
562
        net = MyModel()
563 564
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
565
        optim = fluid.optimizer.SGD(learning_rate=0.001,
566 567
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
568
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
569 570 571 572 573 574
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
575
            device = paddle.set_device('cpu')
576
            fluid.enable_dygraph(device) if dynamic else None
577
            net = MyModel()
578
            inputs = [InputSpec([None, 20], 'float32', 'x')]
579 580
            model = Model(net, inputs)
            model.prepare()
581 582 583 584 585
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

606 607
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
608
            model.summary(input_size=(20), dtype='float32')
609

L
LielinJiang 已提交
610
    def test_summary_nlp(self):
611 612 613 614 615 616
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

L
LielinJiang 已提交
617 618 619 620 621
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
622

L
LielinJiang 已提交
623
        rnn = paddle.nn.LSTM(16, 32, 2)
624 625 626 627 628 629 630 631 632 633 634 635 636 637
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.GRU(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)
L
LielinJiang 已提交
638

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    def test_summary_input(self):
        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        input_data = paddle.rand([4, 23, 16])
        paddle.summary(rnn, input=input_data)

        lenet_List_input = LeNetListInput()
        input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
        paddle.summary(lenet_List_input, input=input_data)

        lenet_dict_input = LeNetDictInput()
        input_data = {
            'x1': paddle.rand([1, 1, 28, 28]),
            'x2': paddle.rand([1, 400])
        }
        paddle.summary(lenet_dict_input, input=input_data)

L
LielinJiang 已提交
655 656 657 658 659
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
660 661 662
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
663
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
664 665 666 667 668 669 670

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
671
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
672

Y
yukavio 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
    def test_static_flops(self):
        paddle.disable_static()
        net = models.__dict__['mobilenet_v2'](pretrained=False)
        inputs = paddle.randn([1, 3, 224, 224])
        static_program = jit._trace(net, inputs=[inputs])[1]
        paddle.flops(static_program, [1, 3, 224, 224], print_detail=True)

    def test_dynamic_flops(self):
        net = models.__dict__['mobilenet_v2'](pretrained=False)

        def customize_dropout(m, x, y):
            m.total_ops += 0

        paddle.flops(
            net, [1, 3, 224, 224],
            custom_ops={paddle.nn.Dropout: customize_dropout},
            print_detail=True)

691
    def test_export_deploy_model(self):
692
        self.set_seed()
693
        np.random.seed(201)
694
        for dynamic in [True, False]:
695
            paddle.disable_static() if dynamic else None
696 697
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
698
            net = LeNet()
699
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
700 701 702 703 704 705 706
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
707

708
            model.save(save_dir, training=False)
709
            ori_results = model.predict_batch(tensor_img)
710
            fluid.disable_dygraph() if dynamic else None
711

712 713 714 715 716 717
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
718 719
                    paddle.static.io.load_inference_model(
                        path_prefix=save_dir, executor=exe))
720 721 722 723 724 725
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
726
            paddle.enable_static()
727

L
LiuChiachi 已提交
728
    def test_dygraph_export_deploy_model_about_inputs(self):
J
Jiaqi Liu 已提交
729 730
        self.set_seed()
        np.random.seed(201)
731 732
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
733
        # without inputs
734
        for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            net = LeNet()
            model = Model(net)
            optim = fluid.optimizer.Adam(
                learning_rate=0.001, parameter_list=model.parameters())
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
                img = np.array(
                    np.random.random((1, 1, 28, 28)), dtype=np.float32)
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
755
                    model.predict_batch([img])
756 757 758

            model.save(save_dir, training=False)
            shutil.rmtree(save_dir)
L
LiuChiachi 已提交
759 760 761 762 763 764 765 766 767 768 769 770
        # with inputs, and the type of inputs is InputSpec
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
        optim = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=model.parameters())
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
771

L
lyuwenyu 已提交
772 773 774 775 776 777 778 779 780
    def test_accumulate(self, ):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
        net = MyModel()
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=net.parameters())
        inputs = [InputSpec([None, dim], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
lyuwenyu 已提交
781

L
lyuwenyu 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        for amp_cfg in [None, 'O1']:
            model = Model(net, inputs, labels)
            model.prepare(
                optim,
                loss=CrossEntropyLoss(reduction="sum"),
                amp_configs=amp_cfg)
            losses, grads = [], []
            for stat in [False, False, True]:
                loss, = model.train_batch([data], [label], update=stat)
                losses.append(loss)
                grads.append([p.grad.numpy() for p in net.parameters()])

            for grad1, grad2, grad3 in zip(*grads):
                np.testing.assert_almost_equal(grad1 * 2, grad2, decimal=4)
                np.testing.assert_almost_equal(
                    grad3, np.zeros_like(grad3), decimal=4)

            np.testing.assert_almost_equal(losses[0], losses[1], decimal=4)
            np.testing.assert_almost_equal(losses[0], losses[2], decimal=4)
L
lyuwenyu 已提交
801

802

803
class TestModelWithLRScheduler(unittest.TestCase):
804 805 806 807
    def test_fit_by_step(self):
        base_lr = 1e-3
        boundaries = [5, 8]

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=4,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

827
        # dynamic test
828 829 830 831 832 833 834 835 836 837 838 839
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

840 841
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))
842
        # static test
843 844
        paddle.enable_static()

845 846 847 848 849 850 851 852 853 854
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))

    def test_fit_by_epoch(self):
        base_lr = 1e-3
        boundaries = [5, 8]
        epochs = 10
        wamup_epochs = 4

        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=wamup_epochs,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

        # dynamic test
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True)

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))
        # static test
        paddle.enable_static()

        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True)

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))

942

943 944
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
L
LielinJiang 已提交
945
        net = MyModel()
946 947
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
948 949 950
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
967

968 969 970 971 972 973 974 975 976 977 978 979
    def test_save_infer_model_without_file_prefix(self):
        paddle.enable_static()
        net = LeNet()
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        model = Model(net, inputs)
        model.prepare()
        path = ""
        tensor_img = np.array(
            np.random.random((1, 1, 28, 28)), dtype=np.float32)
        with self.assertRaises(ValueError):
            model.save(path, training=False)

980

981 982
if __name__ == '__main__':
    unittest.main()