test_model.py 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
C
cnn 已提交
28
from paddle.nn import Conv2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
36
from paddle.io import DistributedBatchSampler, Dataset
37
from paddle.hapi.model import prepare_distributed_context
38 39
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
40 41


42
class LeNetDygraph(paddle.nn.Layer):
L
LielinJiang 已提交
43
    def __init__(self, num_classes=10):
44 45 46
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
C
cnn 已提交
47
            Conv2D(
48
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
49
            ReLU(),
50
            paddle.fluid.dygraph.Pool2D(2, 'max', 2),
C
cnn 已提交
51
            Conv2D(
52
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
53
            ReLU(),
54
            paddle.fluid.dygraph.Pool2D(2, 'max', 2))
55 56 57

        if num_classes > 0:
            self.fc = Sequential(
L
LielinJiang 已提交
58
                Linear(400, 120), Linear(120, 84), Linear(84, 10))
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
101
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
128
        cls.device = paddle.set_device('gpu')
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
C
cnn 已提交
145
        paddle.seed(seed)
L
Leo Chen 已提交
146
        paddle.framework.random._manual_program_seed(seed)
147 148 149 150 151 152 153

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

154 155
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

173 174 175 176 177 178
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

194
    def fit(self, dynamic, num_replicas=None, rank=None):
195 196
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
C
cnn 已提交
197
        paddle.seed(seed)
L
Leo Chen 已提交
198
        paddle.framework.random._manual_program_seed(seed)
199

L
LielinJiang 已提交
200
        net = LeNet()
201
        optim_new = fluid.optimizer.Adam(
202 203
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
204 205
        model.prepare(
            optim_new,
206
            loss=CrossEntropyLoss(reduction="sum"),
207
            metrics=Accuracy())
208 209 210 211 212 213
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
214 215 216 217 218
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
219
        val_sampler = DistributedBatchSampler(
220 221 222 223 224
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
243 244
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
264 265
        model = Model(LeNet(), self.inputs)
        model.prepare()
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None

287 288 289 290 291 292 293 294 295 296 297
    def test_predict_without_inputs(self):
        fluid.enable_dygraph(self.device)
        model = Model(LeNet())
        model.prepare()
        model.load(self.weight_path)
        model._inputs = None
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
        fluid.disable_dygraph()

298

299
class MyModel(paddle.nn.Layer):
L
LielinJiang 已提交
300
    def __init__(self):
301
        super(MyModel, self).__init__()
302
        self._fc = Linear(20, 10)
303 304 305 306 307 308

    def forward(self, x):
        y = self._fc(x)
        return y


309 310 311 312 313 314 315 316 317
class MyDataset(Dataset):
    def __getitem__(self, idx):
        return np.random.random(size=(20,)).astype(np.float32), \
               np.random.randint(0, 10, size=(1,)).astype(np.int64)

    def __len__(self):
        return 40


318 319
class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
C
cnn 已提交
320
        paddle.seed(seed)
L
Leo Chen 已提交
321
        paddle.framework.random._manual_program_seed(seed)
322 323 324 325 326 327 328 329 330

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
331
            m = MyModel()
332 333 334
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
335 336
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
337 338 339 340 341 342 343 344 345
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
346
            device = paddle.set_device('cpu')
347 348 349
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
350
            net = MyModel()
351
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
352
                                         parameter_list=net.parameters())
353

354 355
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
356
            model = Model(net, inputs, labels)
357
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
358 359 360 361
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

362
    def test_test_batch(self):
363 364 365 366 367 368 369 370
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
371
            output = m(to_tensor(data))
372 373 374 375 376
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
377
            device = paddle.set_device('cpu')
378 379
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
380
            net = MyModel()
381
            inputs = [InputSpec([None, dim], 'float32', 'x')]
382 383
            model = Model(net, inputs)
            model.prepare()
384
            out, = model.predict_batch([data])
385

386
            np.testing.assert_allclose(out, ref, rtol=1e-6)
387 388 389 390 391
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
392
            device = paddle.set_device('cpu')
393
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
394
            net = MyModel()
395 396
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
397
            optim = fluid.optimizer.SGD(learning_rate=0.001,
398 399
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
400
            model.prepare(
401
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
402 403 404 405 406
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
        for new_optimizer in [True, False]:
            path = tempfile.mkdtemp()
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            paddle.enable_static()

430 431
    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
432
        # dynamic saving
433
        device = paddle.set_device('cpu')
434
        fluid.enable_dygraph(device)
435
        model = Model(MyModel())
436 437
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
438
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
439 440
        model.save(path + '/test')
        fluid.disable_dygraph()
441

442 443
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
444
        model = Model(MyModel(), inputs, labels)
445 446
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
447
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
448 449 450 451 452 453
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

L
LielinJiang 已提交
454
        net = MyModel()
455 456
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
457
        optim = fluid.optimizer.SGD(learning_rate=0.001,
458 459
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
460
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
461 462
        model.save(path + '/test')

463
        device = paddle.set_device('cpu')
464 465
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
466
        net = MyModel()
467 468
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
469
        optim = fluid.optimizer.SGD(learning_rate=0.001,
470 471
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
472
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
473 474 475 476 477 478
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
479
            device = paddle.set_device('cpu')
480
            fluid.enable_dygraph(device) if dynamic else None
481
            net = MyModel()
482
            inputs = [InputSpec([None, 20], 'float32', 'x')]
483 484
            model = Model(net, inputs)
            model.prepare()
485 486 487 488 489
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

510 511
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
512
            model.summary(input_size=(20), dtype='float32')
513

L
LielinJiang 已提交
514 515
    def test_summary_nlp(self):
        paddle.enable_static()
L
LielinJiang 已提交
516 517 518 519 520 521 522
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
        rnn = paddle.nn.LSTM(16, 32, 2)
        paddle.summary(rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
L
LielinJiang 已提交
523

L
LielinJiang 已提交
524 525 526 527 528
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
529 530 531
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
532
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
533 534 535 536 537 538 539

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
540
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
541

542
    def test_export_deploy_model(self):
543
        self.set_seed()
544
        np.random.seed(201)
545
        for dynamic in [True, False]:
546
            paddle.disable_static() if dynamic else None
547 548
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
549
            net = LeNet()
550
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
551 552 553 554 555 556 557
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
558

559
            model.save(save_dir, training=False)
560
            ori_results = model.predict_batch(tensor_img)
561
            fluid.disable_dygraph() if dynamic else None
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
                    fluid.io.load_inference_model(
                        dirname=save_dir, executor=exe))
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
577
            paddle.enable_static()
578

L
LiuChiachi 已提交
579
    def test_dygraph_export_deploy_model_about_inputs(self):
580 581
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
582
        # without inputs
583
        for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            net = LeNet()
            model = Model(net)
            optim = fluid.optimizer.Adam(
                learning_rate=0.001, parameter_list=model.parameters())
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
                img = np.array(
                    np.random.random((1, 1, 28, 28)), dtype=np.float32)
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
604
                    model.predict_batch([img])
605 606 607

            model.save(save_dir, training=False)
            shutil.rmtree(save_dir)
L
LiuChiachi 已提交
608 609 610 611 612 613 614 615 616 617 618 619
        # with inputs, and the type of inputs is InputSpec
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
        optim = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=model.parameters())
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
620

621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
class TestModelWithLRScheduler(unittest.TestCase):
    def test_fit(self):
        def make_optimizer(parameters=None):
            base_lr = 1e-3
            momentum = 0.9
            weight_decay = 5e-4
            boundaries = [5, 8]
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=4,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

645
        # dynamic test
646 647 648 649 650 651 652 653 654 655 656 657
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

658
        # static test
659 660
        paddle.enable_static()

661 662 663 664 665 666 667 668 669 670
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

671

672 673
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
L
LielinJiang 已提交
674
        net = MyModel()
675

676 677
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
678 679 680
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
697

698

699 700
if __name__ == '__main__':
    unittest.main()