test_model.py 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
C
cnn 已提交
28
from paddle.nn import Conv2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
Y
yukavio 已提交
36 37
import paddle.vision.models as models
import paddle.fluid.dygraph.jit as jit
38
from paddle.io import DistributedBatchSampler, Dataset
39
from paddle.hapi.model import prepare_distributed_context
40 41
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
42 43


44
class LeNetDygraph(paddle.nn.Layer):
L
LielinJiang 已提交
45
    def __init__(self, num_classes=10):
46 47 48
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
C
cnn 已提交
49
            Conv2D(
50
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
51
            ReLU(),
52
            paddle.fluid.dygraph.Pool2D(2, 'max', 2),
C
cnn 已提交
53
            Conv2D(
54
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
55
            ReLU(),
56
            paddle.fluid.dygraph.Pool2D(2, 'max', 2))
57 58 59

        if num_classes > 0:
            self.fc = Sequential(
L
LielinJiang 已提交
60
                Linear(400, 120), Linear(120, 84), Linear(84, 10))
61 62 63 64 65 66 67 68 69 70

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
class ModelInner(paddle.nn.Layer):
    def __init__(self):
        super(ModelInner, self).__init__()
        self.fc = paddle.nn.Linear(3, 4)

    def forward(self, x):
        y = self.fc(x)
        return y, 0


class ModelOutter(paddle.nn.Layer):
    def __init__(self):
        super(ModelOutter, self).__init__()
        self.module1 = ModelInner()
        self.module2 = paddle.nn.Linear(4, 5)

    def forward(self, x):
        y, dummpy = self.module1(x)
        y = self.module2(y)
        return y, 3


93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
class LeNetListInput(paddle.nn.Layer):
    def __init__(self, num_classes=10):
        super(LeNetListInput, self).__init__()
        self.num_classes = num_classes
        self.cov = Conv2D(1, 6, 3, stride=1, padding=1)
        for param in self.cov.parameters():
            param.trainable = False
        self.features = Sequential(
            self.cov,
            ReLU(),
            paddle.fluid.dygraph.Pool2D(2, 'max', 2),
            Conv2D(
                6, 16, 5, stride=1, padding=0),
            ReLU(),
            paddle.fluid.dygraph.Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
                Linear(400, 120), Linear(120, 84), Linear(84, 10))

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def forward(self, inputs):
        x = inputs[0]
        x = self.features(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs[1])
        return x


class LeNetDictInput(LeNetDygraph):
    def forward(self, inputs):
        x = self.features(inputs['x1'])

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x + inputs['x2'])
        return x


133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
165
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
J
Jiangxinz 已提交
191
            cls().skipTest('module not tested when ONLY_CPU compling')
192
        cls.device = paddle.set_device('gpu')
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
C
cnn 已提交
209
        paddle.seed(seed)
L
Leo Chen 已提交
210
        paddle.framework.random._manual_program_seed(seed)
211 212 213 214 215 216 217

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

218 219
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
220

221 222 223
        cls.save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_model')
        if not os.path.exists(cls.save_dir):
            os.makedirs(cls.save_dir)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

239 240 241 242 243 244
    def test_fit_dynamic_with_tuple_input(self):
        self.fit_with_tuple_input(True)

    def test_fit_static_with_tuple_input(self):
        self.fit_with_tuple_input(False)

245 246 247 248 249 250
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

251 252 253 254 255 256
    def test_fit_dynamic_with_num_iters(self):
        self.fit(True, num_iters=1)

    def test_fit_static_with_num_iters(self):
        self.fit(False, num_iters=1)

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

272
    def fit(self, dynamic, num_replicas=None, rank=None, num_iters=None):
273 274
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
C
cnn 已提交
275
        paddle.seed(seed)
L
Leo Chen 已提交
276
        paddle.framework.random._manual_program_seed(seed)
277

L
LielinJiang 已提交
278
        net = LeNet()
279
        optim_new = fluid.optimizer.Adam(
280 281
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
282 283
        model.prepare(
            optim_new,
284
            loss=CrossEntropyLoss(reduction="sum"),
285
            metrics=Accuracy())
286 287 288 289 290
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

291 292 293 294 295 296 297 298
        model.fit(self.train_dataset,
                  batch_size=64,
                  shuffle=False,
                  num_iters=num_iters)

        result = model.evaluate(
            self.val_dataset, batch_size=64, num_iters=num_iters)

299
        train_sampler = DistributedBatchSampler(
300 301 302 303 304
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
305
        val_sampler = DistributedBatchSampler(
306 307 308 309 310
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
311 312 313 314 315

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def fit_with_tuple_input(self, dynamic, num_replicas=None, rank=None):
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        paddle.seed(seed)
        paddle.framework.random._manual_program_seed(seed)

        net = LeNet()
        optim_new = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=tuple(self.inputs), labels=tuple(self.labels))
        model.prepare(
            optim_new,
            loss=CrossEntropyLoss(reduction="sum"),
            metrics=Accuracy())
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
        val_sampler = DistributedBatchSampler(
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
363 364 365 366 367 368 369 370 371 372 373 374 375
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
376 377
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
397 398
        model = Model(LeNet(), self.inputs)
        model.prepare()
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None

420 421 422 423 424 425 426 427 428 429 430
    def test_predict_without_inputs(self):
        fluid.enable_dygraph(self.device)
        model = Model(LeNet())
        model.prepare()
        model.load(self.weight_path)
        model._inputs = None
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
        fluid.disable_dygraph()

431 432 433 434 435 436
    def test_summary_gpu(self):
        paddle.disable_static(self.device)
        rnn = paddle.nn.LSTM(16, 32, 2)
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])

437

438
class MyModel(paddle.nn.Layer):
L
LielinJiang 已提交
439
    def __init__(self):
440
        super(MyModel, self).__init__()
441
        self._fc = Linear(20, 10)
442 443 444 445 446 447

    def forward(self, x):
        y = self._fc(x)
        return y


448 449 450 451 452 453 454 455 456
class MyDataset(Dataset):
    def __getitem__(self, idx):
        return np.random.random(size=(20,)).astype(np.float32), \
               np.random.randint(0, 10, size=(1,)).astype(np.int64)

    def __len__(self):
        return 40


457 458
class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
C
cnn 已提交
459
        paddle.seed(seed)
L
Leo Chen 已提交
460
        paddle.framework.random._manual_program_seed(seed)
461 462 463 464 465 466 467 468 469

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
470
            m = MyModel()
471 472 473
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
474 475
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
476 477 478 479 480 481 482 483 484
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
485
            device = paddle.set_device('cpu')
486 487 488
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
489
            net = MyModel()
490
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
491
                                         parameter_list=net.parameters())
492

493 494
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
495
            model = Model(net, inputs, labels)
496
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
497 498 499 500
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

501
    def test_test_batch(self):
502 503 504 505 506 507 508 509
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
510
            output = m(to_tensor(data))
511 512 513 514 515
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
516
            device = paddle.set_device('cpu')
517 518
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
519
            net = MyModel()
520
            inputs = [InputSpec([None, dim], 'float32', 'x')]
521 522
            model = Model(net, inputs)
            model.prepare()
523
            out, = model.predict_batch([data])
524

525
            np.testing.assert_allclose(out, ref, rtol=1e-6)
526 527 528
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
529 530 531
        path = os.path.join(tempfile.mkdtemp(), '.cache_test_save_load')
        if not os.path.exists(path):
            os.makedirs(path)
532
        for dynamic in [True, False]:
533
            device = paddle.set_device('cpu')
534
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
535
            net = MyModel()
536 537
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
538
            optim = fluid.optimizer.SGD(learning_rate=0.001,
539 540
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
541
            model.prepare(
542
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
543 544
            model.save(path)
            model.load(path)
545
            fluid.disable_dygraph() if dynamic else None
546
        shutil.rmtree(path)
547

548 549
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
550 551 552 553 554

        path = os.path.join(tempfile.mkdtemp(), '.cache_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
        for new_optimizer in [True, False]:
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
570 571
            model.save(path)
            model.load(path)
572
            paddle.enable_static()
573
        shutil.rmtree(path)
574

575
    def test_dynamic_save_static_load(self):
576 577 578 579
        path = os.path.join(tempfile.mkdtemp(),
                            '.cache_dynamic_save_static_load')
        if not os.path.exists(path):
            os.makedirs(path)
580
        # dynamic saving
581
        device = paddle.set_device('cpu')
582
        fluid.enable_dygraph(device)
583
        model = Model(MyModel())
584 585
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
586
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
587
        model.save(path)
588
        fluid.disable_dygraph()
589

590 591
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
592
        model = Model(MyModel(), inputs, labels)
593 594
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
595
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
596
        model.load(path)
597 598 599
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
600 601 602 603
        path = os.path.join(tempfile.mkdtemp(),
                            '.cache_test_static_save_dynamic_load')
        if not os.path.exists(path):
            os.makedirs(path)
L
LielinJiang 已提交
604
        net = MyModel()
605 606
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
607
        optim = fluid.optimizer.SGD(learning_rate=0.001,
608 609
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
610
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
611
        model.save(path)
612

613
        device = paddle.set_device('cpu')
614 615
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
616
        net = MyModel()
617 618
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
619
        optim = fluid.optimizer.SGD(learning_rate=0.001,
620 621
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
622
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
623
        model.load(path)
624 625 626 627 628
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
629
            device = paddle.set_device('cpu')
630
            fluid.enable_dygraph(device) if dynamic else None
631
            net = MyModel()
632
            inputs = [InputSpec([None, 20], 'float32', 'x')]
633 634
            model = Model(net, inputs)
            model.prepare()
635 636 637 638 639
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

660 661
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
662
            model.summary(input_size=(20), dtype='float32')
663

664 665 666
    def test_summary_non_tensor(self):
        paddle.summary(ModelOutter(), input_size=(-1, 3))

L
LielinJiang 已提交
667
    def test_summary_nlp(self):
668 669 670 671 672 673
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

L
LielinJiang 已提交
674 675 676 677 678
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
679

L
LielinJiang 已提交
680
        rnn = paddle.nn.LSTM(16, 32, 2)
681 682 683 684 685 686 687 688 689 690 691 692 693 694
        params_info = paddle.summary(
            rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.GRU(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        params_info = paddle.summary(rnn, (4, 23, 16))
        gt_params = _get_param_from_state_dict(rnn.state_dict())
        np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)
L
LielinJiang 已提交
695

696
    def test_summary_input(self):
697 698 699 700 701 702
        paddle.enable_static()
        mymodel = MyModel()
        input_data = paddle.rand([1, 20])
        paddle.summary(mymodel, input=input_data)
        paddle.disable_static()

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
        input_data = paddle.rand([4, 23, 16])
        paddle.summary(rnn, input=input_data)

        lenet_List_input = LeNetListInput()
        input_data = [paddle.rand([1, 1, 28, 28]), paddle.rand([1, 400])]
        paddle.summary(lenet_List_input, input=input_data)

        lenet_dict_input = LeNetDictInput()
        input_data = {
            'x1': paddle.rand([1, 1, 28, 28]),
            'x2': paddle.rand([1, 400])
        }
        paddle.summary(lenet_dict_input, input=input_data)

L
LielinJiang 已提交
718 719 720 721 722
    def test_summary_dtype(self):
        input_shape = (3, 1)
        net = paddle.nn.Embedding(10, 3, sparse=True)
        paddle.summary(net, input_shape, dtypes='int64')

L
LielinJiang 已提交
723 724 725
    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
726
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
727 728 729 730 731 732 733

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
734
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
735

Y
yukavio 已提交
736
    def test_static_flops(self):
J
Jiabin Yang 已提交
737 738
        if paddle.fluid.framework._in_eager_without_dygraph_check():
            return
Y
yukavio 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
        paddle.disable_static()
        net = models.__dict__['mobilenet_v2'](pretrained=False)
        inputs = paddle.randn([1, 3, 224, 224])
        static_program = jit._trace(net, inputs=[inputs])[1]
        paddle.flops(static_program, [1, 3, 224, 224], print_detail=True)

    def test_dynamic_flops(self):
        net = models.__dict__['mobilenet_v2'](pretrained=False)

        def customize_dropout(m, x, y):
            m.total_ops += 0

        paddle.flops(
            net, [1, 3, 224, 224],
            custom_ops={paddle.nn.Dropout: customize_dropout},
            print_detail=True)

756 757 758 759 760 761 762 763 764 765 766 767
    def test_dynamic_flops_with_multiple_outputs(self):
        net = paddle.nn.MaxPool2D(
            kernel_size=2, stride=2, padding=0, return_mask=True)

        def customize_dropout(m, x, y):
            m.total_ops += 0

        paddle.flops(
            net, [1, 2, 32, 32],
            custom_ops={paddle.nn.Dropout: customize_dropout},
            print_detail=True)

768
    def test_export_deploy_model(self):
769
        self.set_seed()
770
        np.random.seed(201)
771 772 773 774 775 776

        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_export_deploy_model')
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

777
        for dynamic in [True, False]:
778
            paddle.disable_static() if dynamic else None
779 780
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
781
            net = LeNet()
782
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
783 784
            model = Model(net, inputs)
            model.prepare()
785

786 787
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
788

789
            model.save(save_dir, training=False)
790
            ori_results = model.predict_batch(tensor_img)
791
            fluid.disable_dygraph() if dynamic else None
792

793 794 795 796 797 798
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
799 800
                    paddle.static.io.load_inference_model(
                        path_prefix=save_dir, executor=exe))
801 802 803 804
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
805
                    results, ori_results, rtol=1e-5, atol=1e-6)
806

807
            paddle.enable_static()
808

809 810
        shutil.rmtree(save_dir)

L
LiuChiachi 已提交
811
    def test_dygraph_export_deploy_model_about_inputs(self):
J
Jiaqi Liu 已提交
812 813
        self.set_seed()
        np.random.seed(201)
814 815
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
L
LiuChiachi 已提交
816
        # without inputs
817 818 819 820
        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_dygraph_export_deploy')
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
821
        for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
            net = LeNet()
            model = Model(net)
            optim = fluid.optimizer.Adam(
                learning_rate=0.001, parameter_list=model.parameters())
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            if initial == "fit":
                model.fit(mnist_data, batch_size=64, verbose=0)
            else:
                img = np.array(
                    np.random.random((1, 1, 28, 28)), dtype=np.float32)
                label = np.array(np.random.rand(1, 1), dtype=np.int64)
                if initial == "train_batch":
                    model.train_batch([img], [label])
                elif initial == "eval_batch":
                    model.eval_batch([img], [label])
                else:
839
                    model.predict_batch([img])
840 841

            model.save(save_dir, training=False)
842
        shutil.rmtree(save_dir)
L
LiuChiachi 已提交
843
        # with inputs, and the type of inputs is InputSpec
844 845
        save_dir = os.path.join(tempfile.mkdtemp(),
                                '.cache_test_dygraph_export_deploy_2')
L
LiuChiachi 已提交
846 847 848 849 850 851 852 853 854 855
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        net = LeNet()
        inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
        model = Model(net, inputs)
        optim = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=model.parameters())
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
        model.save(save_dir, training=False)
        shutil.rmtree(save_dir)
856

L
lyuwenyu 已提交
857 858 859 860 861 862 863 864 865
    def test_accumulate(self, ):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
        net = MyModel()
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=net.parameters())
        inputs = [InputSpec([None, dim], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
lyuwenyu 已提交
866

L
lyuwenyu 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
        for amp_cfg in [None, 'O1']:
            model = Model(net, inputs, labels)
            model.prepare(
                optim,
                loss=CrossEntropyLoss(reduction="sum"),
                amp_configs=amp_cfg)
            losses, grads = [], []
            for stat in [False, False, True]:
                loss, = model.train_batch([data], [label], update=stat)
                losses.append(loss)
                grads.append([p.grad.numpy() for p in net.parameters()])

            for grad1, grad2, grad3 in zip(*grads):
                np.testing.assert_almost_equal(grad1 * 2, grad2, decimal=4)
                np.testing.assert_almost_equal(
                    grad3, np.zeros_like(grad3), decimal=4)

            np.testing.assert_almost_equal(losses[0], losses[1], decimal=4)
            np.testing.assert_almost_equal(losses[0], losses[2], decimal=4)
L
lyuwenyu 已提交
886

887

888
class TestModelWithLRScheduler(unittest.TestCase):
889 890 891 892
    def test_fit_by_step(self):
        base_lr = 1e-3
        boundaries = [5, 8]

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=4,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

912
        # dynamic test
913 914 915 916 917 918 919 920 921 922 923 924
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

925 926
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))
927
        # static test
928 929
        paddle.enable_static()

930 931 932 933 934 935 936 937 938 939
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()
        model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**len(boundaries)))

    def test_fit_by_epoch(self):
        base_lr = 1e-3
        boundaries = [5, 8]
        epochs = 10
        wamup_epochs = 4

        def make_optimizer(parameters=None):
            momentum = 0.9
            weight_decay = 5e-4
            values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
            learning_rate = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=boundaries, values=values)
            learning_rate = paddle.optimizer.lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=wamup_epochs,
                start_lr=base_lr / 5.,
                end_lr=base_lr,
                verbose=True)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=learning_rate,
                weight_decay=weight_decay,
                momentum=momentum,
                parameters=parameters)
            return optimizer

        # dynamic test
        device = paddle.set_device('cpu')
        fluid.enable_dygraph(device)
        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True)

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))
        # static test
        paddle.enable_static()

        net = MyModel()
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        optim = make_optimizer(net.parameters())
        model = Model(net, inputs, labels)
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))

        dataset = MyDataset()

        lr_scheduler_callback = paddle.callbacks.LRScheduler(
            by_step=False, by_epoch=True)

        model.fit(dataset,
                  dataset,
                  batch_size=4,
                  epochs=epochs,
                  num_workers=0,
                  callbacks=lr_scheduler_callback)

        cnt = 0
        for b in boundaries:
            if b + wamup_epochs <= epochs:
                cnt += 1

        np.testing.assert_allclose(model._optimizer._learning_rate.last_lr,
                                   base_lr * (0.1**cnt))

1027

1028 1029
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
L
LielinJiang 已提交
1030
        net = MyModel()
1031 1032
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
1033 1034 1035
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

1036 1037 1038 1039 1040 1041 1042 1043 1044
    def test_static_without_inputs(self):
        paddle.enable_static()
        net = MyModel()
        with self.assertRaises(TypeError):
            model = Model(net)

    def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel()
1045
        save_dir = os.path.join(tempfile.mkdtemp(), '.cache_test_save_infer')
1046 1047 1048 1049 1050 1051
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
1052
        shutil.rmtree(save_dir)
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    def test_save_infer_model_without_file_prefix(self):
        paddle.enable_static()
        net = LeNet()
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
        model = Model(net, inputs)
        model.prepare()
        path = ""
        tensor_img = np.array(
            np.random.random((1, 1, 28, 28)), dtype=np.float32)
        with self.assertRaises(ValueError):
            model.save(path, training=False)

1066

1067 1068
if __name__ == '__main__':
    unittest.main()