reshape_op.cc 34.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
19

20 21
// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
22
#include "paddle/pten/common/scalar_array.h"
23
#include "paddle/pten/kernels/reshape_grad_kernel.h"
24
#include "paddle/pten/kernels/reshape_kernel.h"
W
wanghuancoder 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
38 39 40
namespace paddle {
namespace operators {

41 42 43 44 45 46 47 48
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
49 50
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
51 52 53 54 55
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
56 57
    if (platform::is_gpu_place(tensor->place()) ||
        platform::is_xpu_place(tensor->place())) {
58
      framework::Tensor temp;
59
      paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(), &temp);
60 61 62 63 64 65 66 67 68 69

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
70 71 72 73 74 75 76 77
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
78
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
79 80
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
81
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
82 83
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
84

85 86
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
87
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
88 89
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
90 91 92 93 94
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
95 96 97 98 99 100 101
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
102 103 104 105 106
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
107 108 109 110 111 112 113
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
114

115 116 117 118 119 120 121 122 123 124 125
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
126 127
      return;
    }
128 129

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
130 131 132 133 134
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
135

136 137 138 139
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
153 154 155
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
156 157 158 159 160 161 162 163 164 165
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
166 167
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
168 169 170 171
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
172 173
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
174 175
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
176 177 178 179 180 181
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
182
      } else {
183 184
        PADDLE_ENFORCE_GT(
            shape[i], 0,
185 186
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
187
                "be negative except one unknown dimension. "
188 189
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
190 191
      }

192 193
      // NOTE all non-zero values will be converted to True (include negative
      // value)
Y
yuyang18 已提交
194 195 196 197 198 199
      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
200
      if (all_positive) {
Y
yuyang18 已提交
201 202 203 204 205
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
206 207 208 209 210 211 212
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
213
                "'shape' is [%s], known capacity of 'shape' is %d.",
214
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
215 216 217 218
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
219 220 221
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
222 223 224 225 226 227 228
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
229
      }
Y
yuyang18 已提交
230
    }
231 232 233 234 235

    // support reshape with zero-input(input tensor with product(shape) == 0)
    // by now we require that if the input tensor is zero shape, the target
    // shape of output must be zero
    if (in_size == 0) {
J
JZ-LIANG 已提交
236
      PADDLE_ENFORCE_LE(
237 238 239 240 241 242 243 244 245
          capacity, in_size,
          platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X's shape = [%s], X's capacity = %d."
              "But the target shape of Out is [%s],  the "
              "capacity of 'Out' is %d.",
              in_dims, in_size, framework::make_ddim(shape), capacity));
    }

Y
yuyang18 已提交
246 247 248 249 250 251
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
252 253 254 255
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
256
  }
257 258 259 260 261 262 263 264 265 266

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
267 268
};

Y
Yibing Liu 已提交
269 270
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
271
  void Make() override {
272 273
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
274 275 276
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
277
             "set correctly to guarantee shape inference in compile time.")
278
        .AsDispensable();
279 280
    AddInput(
        "ShapeTensor",
281 282 283 284
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
285 286
        .AsDuplicable()
        .AsDispensable();
287
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
288
    AddAttr<std::vector<int>>(
289 290 291 292
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
293
        .SetDefault({});
294 295
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
Z
zmx 已提交
296 297
        .SetDefault(false)
        .AsExtra();
K
kexinzhao 已提交
298 299
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
300

301 302
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
303

C
caoying03 已提交
304
Examples:
Y
Yibing Liu 已提交
305

C
caoying03 已提交
306 307 308 309
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

310
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
311 312 313 314 315 316
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

317
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
318 319 320 321
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
322

C
caoying03 已提交
323
Note:
Y
Yibing Liu 已提交
324

C
caoying03 已提交
325 326 327
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
328 329

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
330
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
331
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
332
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
333 334

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
335
Attr(shape) still should be set correctly to guarantee shape inference in
336
compile-time.
Y
Yibing Liu 已提交
337

Y
Yibing Liu 已提交
338 339 340 341 342 343 344 345 346 347 348 349
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

350
  void InferShape(framework::InferShapeContext *ctx) const override {
351 352 353
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
354
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
355 356
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
357
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
358
  }
359 360 361 362

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
363 364 365 366
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
367
  }
Y
Yibing Liu 已提交
368 369
};

Y
yuyang18 已提交
370 371 372 373 374
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
375 376 377
    // framework::DDim out_dims = out->dims();
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*in);

378 379 380 381 382 383 384
    // we can't MakePtenDenseTensor by out, because the out of reshape may have
    // multiple states, some can MakePtenDenseTensor but other's cannot:
    // 1. out tensor is not initialized
    // 2. out tensor is input (complete inplace)
    // 3. out tensor is view of input
    // We can't MakePtenDenseTensor for case 2, so we solve this case by
    // creating a temporary tensor here:
385
    pten::DenseTensorMeta meta{pten::TransToPtenDataType(in->type()),
386
                               in->dims(), in->layout()};
387 388 389 390
    auto pt_out_tmp = std::make_shared<pten::DenseTensor>(
        pten::make_intrusive<paddle::experimental::SharedStorage>(
            ctx.GetPlace()),
        std::move(meta));
391
    pten::DenseTensor *pt_out = nullptr;
392 393 394
    if (in != nullptr && out != nullptr && in->Holder() != nullptr &&
        out->Holder() != nullptr &&
        in->Holder()->ptr() == out->Holder()->ptr()) {
395 396 397 398
      pt_out = pt_x.get();
    } else {
      pt_out = pt_out_tmp.get();
    }
Y
yuyang18 已提交
399

400 401
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
402 403 404
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
405
    pten::ScalarArray pt_scalar_shape;
406 407
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
408 409 410 411 412
      std::vector<pten::DenseTensor> pt_vec_shape;
      for (auto &tensor : list_new_shape_tensor) {
        if (platform::is_gpu_place(tensor->place()) ||
            platform::is_xpu_place(tensor->place())) {
          framework::Tensor temp;
413 414
          paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(),
                                            &temp);
415 416 417 418 419 420 421
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(temp))));
        } else {
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(*tensor))));
        }
      }
422
      pt_scalar_shape = pten::ScalarArray(pt_vec_shape);
423 424 425 426 427
    } else if (shape_tensor) {
      std::unique_ptr<pten::DenseTensor> pt_shape;
      if (platform::is_gpu_place(shape_tensor->place()) ||
          platform::is_xpu_place(shape_tensor->place())) {
        framework::Tensor temp;
428 429
        paddle::framework::TensorCopySync(*shape_tensor, platform::CPUPlace(),
                                          &temp);
430 431 432 433
        pt_shape = paddle::experimental::MakePtenDenseTensor(temp);
      } else {
        pt_shape = paddle::experimental::MakePtenDenseTensor(*shape_tensor);
      }
434
      pt_scalar_shape = pten::ScalarArray(*pt_shape.get());
435
    } else {
436
      auto &shape_attr = ctx.Attr<std::vector<int>>("shape");
437 438 439 440
      pt_scalar_shape = pten::ScalarArray(shape_attr);
    }
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
441
      pten::ReshapeKernel(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
442
    }
443
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
444 445
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
446
      pten::ReshapeKernel(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
447
    }
448 449
#endif
#ifdef PADDLE_WITH_XPU
450 451
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
452
      pten::ReshapeKernel(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
453
    }
454
#endif
455 456 457
    // non-inplace need move all result from pt_out to out, inplace need set
    // result dims.
    if (in != out) {
458
      paddle::experimental::SharesStorage(pt_out, static_cast<Tensor *>(out));
459 460
    } else {
      out->Resize(pt_out->dims());
Y
yuyang18 已提交
461
    }
Y
yuyang18 已提交
462
  }
Y
yuyang18 已提交
463 464 465 466 467 468 469
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
470
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

    auto pt_d_x = paddle::experimental::MakePtenDenseTensor(*d_x);
    auto pt_d_out = paddle::experimental::MakePtenDenseTensor(*d_out);

    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
      pten::ReshapeGradKernel(dev_ctx, *pt_d_out.get(), pt_d_x.get());
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
      pten::ReshapeGradKernel(dev_ctx, *pt_d_out.get(), pt_d_x.get());
    }
#endif
#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
      pten::ReshapeGradKernel(dev_ctx, *pt_d_out.get(), pt_d_x.get());
    }
#endif
Y
yuyang18 已提交
491
  }
Y
yuyang18 已提交
492 493
};

494 495 496 497 498
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");
499
    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
500

501 502
    auto pt_dd_x = paddle::experimental::MakePtenDenseTensor(*dd_x);
    auto pt_dd_out = paddle::experimental::MakePtenDenseTensor(*dd_out);
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
      pten::ReshapeDoubleGradKernel(dev_ctx, *pt_dd_x.get(), pt_dd_out.get());
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
      pten::ReshapeDoubleGradKernel(dev_ctx, *pt_dd_x.get(), pt_dd_out.get());
    }
#endif
#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
      pten::ReshapeDoubleGradKernel(dev_ctx, *pt_dd_x.get(), pt_dd_out.get());
    }
#endif
520 521 522
  }
};

523 524 525 526 527 528 529 530 531 532 533 534 535
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
536
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
537 538
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
539 540 541 542 543 544 545 546
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
547 548

    ReshapeOp::InferShape(ctx);
549
  }
550 551 552

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
553
    std::string shape;
554 555
    auto multi_inputs = ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (multi_inputs.size() > 0) {
556
      shape = "ShapeTensor";
557
    } else if (ctx.HasInput("Shape")) {
558
      shape = "Shape";
559
    } else {
560
      shape = "shape";
561
    }
562
    return framework::KernelSignature("reshape", {"X"}, {shape}, {"Out"});
563
  }
564 565 566 567 568 569 570 571 572 573
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
574 575 576 577
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
578
        .SetDefault(false);
579 580 581 582 583
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
584 585 586
  }
};

H
hong 已提交
587 588
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
589
 public:
H
hong 已提交
590
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
591

592
  void Apply(GradOpPtr<T> grad_op) const override {
593
    grad_op->SetType("reshape2_grad");
H
hong 已提交
594 595 596 597
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
598 599 600
  }
};

H
hong 已提交
601 602
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
603
 public:
H
hong 已提交
604
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
605

606
  void Apply(GradOpPtr<T> grad_op) const override {
607
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
608 609 610 611
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
612 613 614
  }
};

615 616 617 618 619 620 621 622 623
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
624 625 626
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
627
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
628 629
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
630 631 632 633 634 635 636 637 638
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
639 640 641 642
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
643
  }
644 645 646 647 648 649 650 651 652 653

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
654 655 656 657 658 659 660

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    return framework::KernelSignature("reshape_grad",
                                      {framework::GradVarName("Out")}, {},
                                      {framework::GradVarName("X")});
  }
661 662
};

663 664 665 666 667 668 669 670 671 672
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
673 674
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
675 676 677 678 679 680 681 682
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
683 684 685
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
686 687 688 689 690 691 692 693 694 695 696
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
697 698 699 700 701
  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    return framework::KernelSignature("reshape_double_grad", {"DDX"}, {},
                                      {"DDOut"});
  }
702 703
};

704 705
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
706 707
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
708 709
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
710
                                    "DOut");
D
dzhwinter 已提交
711

Y
Yibing Liu 已提交
712 713 714
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
715
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
716

H
hong 已提交
717 718 719 720
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
721
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
722
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
723
                  ops::ReshapeGradInplaceInferer);
724

725 726 727 728 729 730 731
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
732
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
733 734
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
735
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
736
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
737 738
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
739
                  ops::ReshapeGradInplaceInferer);
740
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
741 742
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
743

744 745 746 747
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
748 749 750
    paddle::platform::bfloat16, ops::ReshapeKernel,
    paddle::platform::complex<float>, ops::ReshapeKernel,
    paddle::platform::complex<double>, ops::ReshapeKernel);
751 752 753 754 755

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
J
Jacek Czaja 已提交
756
    ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
757 758
    paddle::platform::complex<float>, ops::ReshapeGradKernel,
    paddle::platform::complex<double>, ops::ReshapeGradKernel);
759 760 761 762
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
J
Jacek Czaja 已提交
763
    ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
764 765
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
766
    ops::ReshapeDoubleGradKernel);
767

768
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
769 770
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
771 772
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
773
                                ops::ReshapeKernel);
774 775 776
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
777
                                ops::ReshapeGradKernel, uint8_t,
778
                                ops::ReshapeGradKernel, plat::float16,
779

780 781 782
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
783 784
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
785
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
786 787
                                plat::complex<float>, ops::ReshapeKernel,
                                plat::complex<double>, ops::ReshapeKernel);
788 789 790 791
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
792 793
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
    ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
794 795 796 797 798 799

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
800 801 802
    ops::ReshapeDoubleGradKernel, plat::complex<float>,
    ops::ReshapeDoubleGradKernel, plat::complex<double>,
    ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
803
#endif
804 805 806 807 808

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
809
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
810 811
                               plat::complex<float>, ops::ReshapeKernel,
                               plat::complex<double>, ops::ReshapeKernel);
812 813 814 815
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
816
                               ops::ReshapeGradKernel, bool,
817 818
                               ops::ReshapeGradKernel, plat::complex<float>,
                               ops::ReshapeGradKernel, plat::complex<double>,
819
                               ops::ReshapeGradKernel);
820
#endif