manipulation.py 170.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import Counter
W
Wilber 已提交
16

Z
zhiboniu 已提交
17
from ..static import Variable, device_guard
18 19 20
from ..framework import core, in_dygraph_mode
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check, _non_static_mode
from ..framework import LayerHelper
Z
zhiboniu 已提交
21
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
W
Wilber 已提交
22
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
23
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
24
import numpy as np
25
# TODO: define functions to manipulate a tensor
26
from ..fluid.layers.nn import _elementwise_op_in_dygraph
27
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
28
import paddle
29
from paddle import _C_ops, _legacy_C_ops
30 31 32 33 34
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
35

36 37
__all__ = []

W
Wilber 已提交
38

39 40 41 42 43 44 45 46
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
47
        x (Tensor): An input N-D Tensor with data type bool, float16,
48
            float32, float64, int32, int64, uint8.
49
        dtype (np.dtype|str): Data type of the output:
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
        Tensor: A Tensor with the same shape as input's.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
66
        return _C_ops.cast(x, dtype)
67 68 69 70

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
71
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
72 73 74 75 76 77 78 79 80 81 82 83 84 85
        return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
    ], 'cast')
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
86 87 88 89 90 91 92
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        Tensor:  A ``Tensor``. The data type is same as ``input``.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
            # sliced_1 is input[0:3, 0:2, 2:4].

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
            # sliced_2 is input[0:3, 0:2, 2:4].
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
                    "Input axes should not be an empty list/tuple.")
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
                "Input axes must be a python list or tuple, but reveived {}".
                format(type(axes)))

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
196 197
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
198 199 200 201 202 203 204 205
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in ends
            ]
        elif isinstance(ends, tmp_tensor_type):
206
            tensor_t = ends.numpy()
207
            ends = [ele for ele in tensor_t]
208
            infer_flags = list(-1 for i in range(len(axes)))
209

210
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
                        "Input axes should not be an empty list/tuple.")
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
230 231
                    "Input axes must be a python list or tuple, but reveived {}"
                    .format(type(axes)))
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

261 262 263
            return _legacy_C_ops.slice(input, starts_tensor, ends_tensor, None,
                                       None, 'axes', axes, 'infer_flags',
                                       infer_flags, *attrs)
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
318 319 320 321
    helper.append_op(type='slice',
                     inputs=inputs,
                     attrs=attrs,
                     outputs={'Out': out})
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
377
        return _C_ops.transpose(x, perm)
378 379
    else:
        if _in_legacy_dygraph():
380
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
406 407 408 409 410 411 412
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    return out


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
        list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
441 442 443 444 445
    if in_dygraph_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
446
        return _C_ops.unstack(x, axis, num)
447

448 449 450 451 452
    if _non_static_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
453
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
454 455 456 457 458 459 460 461 462 463 464 465

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

466 467 468 469 470 471 472
    helper.append_op(type='unstack',
                     inputs={'X': [x]},
                     outputs={'Y': outs},
                     attrs={
                         'axis': axis,
                         'num': num
                     })
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
494

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
523 524
        return _C_ops.shard_index(input, index_num, nshards, shard_id,
                                  ignore_value)
525 526 527 528 529 530 531 532 533

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
534 535 536 537 538 539 540 541 542 543
    helper.append_op(type=op_type,
                     inputs={'X': [input]},
                     outputs={'Out': out},
                     attrs={
                         'index_num': index_num,
                         'nshards': nshards,
                         'shard_id': shard_id,
                         'ignore_value': ignore_value
                     },
                     stop_gradient=True)
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
587
        shape (list|tuple|Tensor, optional): The output shape is specified
588 589 590 591 592 593 594 595 596 597 598
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
599
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

    Returns:
        Tensor: The cropped Tensor has same data type with `x`.

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
633

634 635 636
    helper = LayerHelper('crop_tensor', **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
P
PuQing 已提交
637 638
    check_type(shape, 'shape', (list, tuple, Variable, type(None)),
               'crop_tensor')
639 640 641 642 643 644
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
645 646 647
    if shape is None:
        shape = x.shape

648
    if in_dygraph_mode():
649
        return _C_ops.crop_tensor(x, shape, offsets)
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
718 719 720 721 722
                fill_constant([1],
                              'int32',
                              dim_size,
                              force_cpu=True,
                              out=temp_out)
723 724 725 726 727 728 729 730 731
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

732 733 734 735
    helper.append_op(type='crop_tensor',
                     inputs=ipts,
                     outputs={'Out': out},
                     attrs=None if len(attrs) == 0 else attrs)
736 737 738
    return out


739 740 741 742 743 744 745 746 747
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
748 749
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
            "The type of 'value'  must be int or float, but received %s." %
            (type(value)))
769
    if in_dygraph_mode():
770
        return _C_ops.fill_(x, value)
771
    else:
772 773
        return _legacy_C_ops.fill_any_(x, "value_float", float(value),
                                       "value_int", int(value))
774 775 776 777 778 779 780 781 782 783 784


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
785
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
786 787

    Returns:
788
        x (Tensor): Tensor x filled with zero inplace
789 790 791 792 793 794 795 796 797 798 799 800

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
801
    if in_dygraph_mode():
802
        return _C_ops.fill_(x, 0.)
803
    else:
804 805
        return _legacy_C_ops.fill_any_(x, "value_float", 0., "value_int",
                                       int(0))
806 807


808 809 810
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
811 812
    Note:
        This API is ONLY available in Dygraph mode.
813

814
    This function fill the value into the x Tensor's diagonal inplace.
815

816 817 818 819 820 821
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
822

823 824
    Returns:
        Tensor: Tensor with diagonal filled with value.
825

826 827 828 829 830 831 832
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
833

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_diagonal_')
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
    assert len(inshape) >= 2, ('Tensor dims should >= 2 in fill_diagonal_ API')
    if len(inshape) > 2:
        assert len(inshapeset) == 1, (
            'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
        )
Z
zhiboniu 已提交
850 851
    if in_dygraph_mode():
        if len(inshape) == 2:
852 853
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
854

855
    if len(inshape) == 2:
856 857 858 859
        return _legacy_C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                            'wrap', wrap)
    return _legacy_C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                        'wrap', True)
860 861


862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
    assert dim1 < len(inshape) and dim1 >= -len(inshape), (
        'dim1 should between [-rank,rank) in fill_diagonal_tensor_')
    assert dim2 < len(inshape) and dim2 >= -len(inshape), (
        'dim2 should between [-rank,rank) in fill_diagonal_tensor_')
    assert len(inshape) >= 2, (
        'Tensor dims should >= 2 in fill_diagonal_tensor_')
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
877 878
    diaglen = min(min(inshape[dim1], inshape[dim1] + offset),
                  min(inshape[dim2], inshape[dim2] - offset))
879
    predshape.append(diaglen)
880 881
    assert tuple(predshape) == tuple(
        y.shape), ("the y shape should be {}".format(predshape))
882 883 884 885
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
886
        if in_dygraph_mode():
887
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
888
        else:
889 890 891
            return _legacy_C_ops.fill_diagonal_tensor_(x, y, 'offset', offset,
                                                       'dim1', dim1, 'dim2',
                                                       dim2)
Z
zhiboniu 已提交
892
    if in_dygraph_mode():
893
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
894
    else:
895 896
        return _legacy_C_ops.fill_diagonal_tensor(x, y, 'offset', offset,
                                                  'dim1', dim1, 'dim2', dim2)
897 898 899 900


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
901 902
    Note:
        This API is ONLY available in Dygraph mode.
903 904 905 906

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
907 908 909 910 911 912
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
928 929 930 931 932 933
    return _fill_diagonal_tensor_impl(x,
                                      y,
                                      offset=offset,
                                      dim1=dim1,
                                      dim2=dim2,
                                      inplace=True)
934 935 936 937 938 939 940


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
941 942 943 944 945 946
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
962 963 964 965 966 967
    return _fill_diagonal_tensor_impl(x,
                                      y,
                                      offset=offset,
                                      dim1=dim1,
                                      dim2=dim2,
                                      inplace=False)
968 969


Z
zhiboniu 已提交
970 971 972
@dygraph_only
def tolist(x):
    """
973 974
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
975 976 977 978

    This function translate the paddle.Tensor to python list.

    Args:
979
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

    Returns:
        list: A list that contain the same value of current Tensor.


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1001 1002 1003
def concat(x, axis=0, name=None):
    """

1004
    Concatenates the input along the axis.
1005 1006

    Args:
1007
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1008
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1009
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1010
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1011 1012
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1013
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1014 1015

    Returns:
1016
        Tensor: A Tensor with the same data type as ``x``.
1017 1018 1019

    Examples:
        .. code-block:: python
1020

1021
            import paddle
1022

1023 1024 1025 1026 1027 1028
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1029 1030 1031
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1032 1033 1034
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1035 1036 1037 1038 1039 1040 1041 1042 1043
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1044 1045 1046 1047 1048 1049 1050
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1051
        return _C_ops.concat(input, axis)
1052 1053 1054 1055 1056 1057 1058 1059

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1060
        _legacy_C_ops.concat(input, out, 'axis', axis)
1061 1062 1063 1064 1065
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
1066 1067 1068 1069
            check_variable_and_dtype(x, 'input[' + str(id) + ']', [
                'bool', 'float16', 'float32', 'float64', 'int32', 'int64',
                'int8', 'unit8'
            ], 'concat')
1070 1071
            if x.dtype != input[0].dtype:
                raise TypeError(
1072 1073
                    "All the Tensors in the input must have the same data type."
                )
1074 1075 1076 1077 1078 1079 1080
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
1081 1082
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                "number of the elements must be 1, but received %s." % len(input)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
1105 1106 1107 1108 1109
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1110 1111 1112
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1113

1114 1115 1116 1117
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
1118
    return out
1119 1120


1121 1122
def broadcast_tensors(input, name=None):
    """
1123
    Broadcast a list of tensors following broadcast semantics
1124

1125
    Note:
1126 1127 1128
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1129 1130

    Args:
1131
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1132 1133
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1134
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1151
    if paddle.framework.in_dygraph_mode():
1152
        return _C_ops.broadcast_tensors(input)
1153
    if paddle.framework._non_static_mode():
1154
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
1187 1188
                invalid = (output_shape_r[i] != shape[i]
                           and output_shape_r[i] != 1 and shape[i] != 1)
1189 1190 1191 1192
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1193
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1206 1207
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()))
1208 1209 1210
        i += 1

    inputs = {'X': input}
1211 1212 1213 1214
    helper.append_op(type='broadcast_tensors',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs={})
1215 1216 1217 1218

    return out


Y
yaoxuefeng 已提交
1219
def flip(x, axis, name=None):
W
Wilber 已提交
1220
    """
Y
yaoxuefeng 已提交
1221
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1222 1223

    Args:
Y
yaoxuefeng 已提交
1224
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1225
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1226
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1227
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1228 1229

    Returns:
Y
yaoxuefeng 已提交
1230
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1231 1232 1233 1234 1235

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1236 1237

          image_shape=(3, 2, 2)
1238
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1239 1240
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1241

R
Roc 已提交
1242 1243
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1244
    """
R
Roc 已提交
1245 1246
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1247 1248

    if in_dygraph_mode():
1249
        return _C_ops.flip(x, axis)
H
hong 已提交
1250

Z
zhiboniu 已提交
1251
    if paddle.in_dynamic_mode():
1252
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1253

W
Wilber 已提交
1254
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1255 1256
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
1257 1258 1259
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
1260
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1261 1262 1263 1264 1265
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

1266 1267 1268 1269
    helper.append_op(type="flip",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={"axis": axis})
W
Wilber 已提交
1270
    return out
1271 1272


Z
zmxdream 已提交
1273 1274
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1275
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1276 1277 1278

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1279
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1280 1281
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1295
          print(data)
Z
zmxdream 已提交
1296 1297 1298
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1299
          y = paddle.rot90(data, 1, [0, 1])
1300
          print(y)
Z
zmxdream 已提交
1301 1302 1303
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1304
          y= paddle.rot90(data, -1, [0, 1])
1305
          print(y)
Z
zmxdream 已提交
1306 1307 1308
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1309 1310
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1311
          print(data2)
Z
zmxdream 已提交
1312 1313 1314 1315 1316
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1317
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1318 1319 1320 1321 1322
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'rot90')
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1336 1337 1338
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
                total_rot_dims))
Z
zmxdream 已提交
1339
    if input_total_dims < 2:
1340 1341 1342
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
                input_total_dims))
Z
zmxdream 已提交
1343 1344 1345

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1346 1347
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}"
            .format(axes[0], axes[1]))
Z
zmxdream 已提交
1348 1349

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1350 1351
        raise ValueError("Rotation axis0 out of range, axis0 = {}".format(
            axes[0]))
Z
zmxdream 已提交
1352
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1353 1354
        raise ValueError("Rotation axis1 out of range, axis1 = {}".format(
            axes[1]))
Z
zmxdream 已提交
1355

Z
zmxdream 已提交
1356
    k %= 4
Z
zmxdream 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
    (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                axes_list[axes[0]])
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1372
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1373
    r"""
1374 1375
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1376
    Note:
1377
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1378
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1409
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1410
                      float64, int8, int32, int64, uint8.
1411 1412
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1413
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1414 1415

    Returns:
Y
yaoxuefeng 已提交
1416
        Tensor: A tensor with the contents of the input tensor, with input \
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1427

Y
yaoxuefeng 已提交
1428 1429
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1430

1431 1432
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1433 1434 1435 1436

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1437 1438
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1439
        raise ValueError("The input x should be a Tensor")
1440

Z
zhiboniu 已提交
1441
    if not paddle.in_dynamic_mode():
1442
        check_variable_and_dtype(
1443 1444
            x, 'x',
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1445
            'flatten')
1446 1447

    x_dim = len(x.shape)
1448 1449
    if not (isinstance(start_axis,
                       int)) or (start_axis > x_dim - 1) or start_axis < -x_dim:
1450 1451
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
1452 1453
    if not (isinstance(stop_axis,
                       int)) or (stop_axis > x_dim - 1) or stop_axis < -x_dim:
1454 1455 1456 1457 1458 1459 1460 1461 1462
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1463
    if in_dygraph_mode():
1464
        return _C_ops.flatten(x, start_axis, stop_axis)
1465 1466

    if _in_legacy_dygraph():
1467 1468
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
1469 1470
        return dy_out

1471
    helper = LayerHelper('flatten', **locals())
1472 1473
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    helper.append_op(type='flatten_contiguous_range',
                     inputs={"X": x},
                     outputs={
                         'Out': out,
                         'XShape': x_shape
                     },
                     attrs={
                         "start_axis": start_axis,
                         "stop_axis": stop_axis
                     })
1484 1485 1486
    return out


1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1497 1498
    if not (isinstance(start_axis,
                       int)) or (start_axis > x_dim - 1) or start_axis < -x_dim:
1499 1500
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
1501 1502
    if not (isinstance(stop_axis,
                       int)) or (stop_axis > x_dim - 1) or stop_axis < -x_dim:
1503 1504 1505 1506 1507 1508 1509 1510 1511
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1512
    if in_dygraph_mode():
1513
        return _C_ops.flatten_(x, start_axis, stop_axis)
1514 1515

    if _in_legacy_dygraph():
1516 1517
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
1518
        return dy_out
1519 1520


Y
yaoxuefeng 已提交
1521
def roll(x, shifts, axis=None, name=None):
1522
    """
1523 1524 1525
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1526 1527 1528
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1529
        x (Tensor): The x tensor as input.
1530
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1531
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1532
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1533 1534 1535
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1536 1537

    Returns:
Y
yaoxuefeng 已提交
1538
        Tensor: A Tensor with same data type as `x`.
1539 1540 1541

    Examples:
        .. code-block:: python
1542

1543 1544
            import paddle

1545 1546 1547
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1548
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1549
            print(out_z1)
Y
yaoxuefeng 已提交
1550 1551 1552 1553
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1554
            print(out_z2)
Y
yaoxuefeng 已提交
1555 1556 1557
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1558 1559 1560 1561 1562
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1563
    """
Y
yaoxuefeng 已提交
1564
    origin_shape = x.shape
1565 1566
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1567 1568 1569 1570
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1571
    if axis is not None:
Y
yaoxuefeng 已提交
1572 1573 1574
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1575 1576
                    "axis is out of range, it should be in range [{}, {}), but received {}"
                    .format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
1577 1578 1579
    else:
        axis = []

F
From00 已提交
1580
    if in_dygraph_mode():
1581
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1582 1583

    if _in_legacy_dygraph():
1584
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1585

1586 1587
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1588

Y
yaoxuefeng 已提交
1589
    out = helper.create_variable_for_type_inference(x.dtype)
1590

1591
    if isinstance(shifts, Variable):
1592 1593 1594 1595 1596 1597 1598
        helper.append_op(type='roll',
                         inputs={
                             'X': x,
                             "ShiftsTensor": shifts
                         },
                         outputs={'Out': out},
                         attrs={'axis': axis})
1599 1600
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
1601 1602 1603 1604 1605 1606 1607
        helper.append_op(type='roll',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'axis': axis,
                             'shifts': shifts
                         })
1608
    return out
1609 1610


L
Leo Chen 已提交
1611
def stack(x, axis=0, name=None):
1612
    """
1613
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1614
    All tensors must be of the same shape and same dtype.
1615 1616 1617

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1618
    tensor is [A, N, B], etc.
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1655
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1656 1657 1658 1659 1660 1661 1662 1663

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1664
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1665
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1666
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1667
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1668
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1669
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1670

1671
    Returns:
L
Leo Chen 已提交
1672
        Tensor: The stacked tensor with same data type as input.
1673

1674
    Example:
1675
        .. code-block:: python
L
Leo Chen 已提交
1676

1677
            import paddle
1678

L
Leo Chen 已提交
1679 1680 1681
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1682

L
Leo Chen 已提交
1683 1684
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1685
            print(out)
L
Leo Chen 已提交
1686 1687 1688
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1689

1690 1691 1692 1693 1694 1695
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1696
    """
1697 1698 1699
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1700
        return _C_ops.stack(x, axis)
1701 1702

    if _in_legacy_dygraph():
1703
        return _legacy_C_ops.stack(x, 'axis', axis)
1704 1705 1706 1707 1708 1709 1710 1711

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
        if isinstance(x, Variable) and x.desc.type(
        ) == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            x = [x]
        else:
1712 1713 1714 1715
            raise TypeError(
                "The type of '%s' in %s must be %s, but received %s" %
                ('x', 'stack', 'list[Tensor], tuple[Tensor] or TensorArray',
                 type(x)))
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
            check_variable_and_dtype(i, 'x', \
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'stack')

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': x[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': True
                         })
1739
    else:
1740 1741 1742 1743
        helper.append_op(type='stack',
                         inputs={'X': x},
                         outputs={'Y': out},
                         attrs={'axis': axis})
1744 1745

    return out
1746 1747


1748
def split(x, num_or_sections, axis=0, name=None):
1749 1750
    """
    Split the input tensor into multiple sub-Tensors.
1751

1752
    Args:
1753
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1754
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1755 1756 1757 1758
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1759
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1760 1761 1762 1763
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1764
    Returns:
1765
        list(Tensor): The list of segmented Tensors.
1766

1767 1768
    Example:
        .. code-block:: python
1769

1770
            import paddle
1771

L
Leo Chen 已提交
1772 1773
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1774

L
Leo Chen 已提交
1775 1776 1777 1778
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1779 1780

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1781 1782 1783
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1784 1785

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1786 1787 1788
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1789

L
Leo Chen 已提交
1790
            # axis is negative, the real axis is (rank(x) + axis)=1
1791
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1792 1793 1794
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1795
    """
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1817 1818
                        num_or_sections[index] = num_or_sections[index].numpy(
                        )[0]
1819 1820 1821 1822 1823 1824 1825
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
                "received %s." % (type(num_or_sections)))
1826
        if in_dygraph_mode():
C
Charles-hit 已提交
1827 1828 1829 1830
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1831 1832
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1833
            _legacy_C_ops.split(input, out, *attrs)
1834
            return out
1835

1836 1837 1838 1839
    check_variable_and_dtype(input, 'input', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'int8'
    ], 'split')
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
1867 1868 1869 1870 1871
                fill_constant([1],
                              'int32',
                              dim_size,
                              force_cpu=True,
                              out=temp_out)
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
        attrs['sections'] = list(
1897 1898
            map(lambda ele: -1
                if isinstance(ele, Variable) else ele, num_or_sections))
1899 1900 1901 1902 1903 1904 1905 1906
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
1907 1908 1909 1910
    helper.append_op(type='split',
                     inputs=inputs,
                     outputs={'Out': outs},
                     attrs=attrs)
1911
    return outs
1912 1913


1914 1915 1916
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
1917

1918 1919
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1920
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1921 1922 1923 1924 1925 1926 1927 1928
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
1929

1930 1931
    Example:
        .. code-block:: python
1932

1933
            import paddle
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
            "The input tensor's dimension must be greater than 1, but got {}".
            format(x.ndim))
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
1956
def squeeze(x, axis=None, name=None):
1957
    """
1958 1959 1960 1961
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
1962
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
1963

1964 1965
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
1966
    If axis is not provided, all dims equal of size 1 will be removed.
1967 1968 1969 1970 1971 1972

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
1973 1974
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
1975
          Output:
L
Leo Chen 已提交
1976
            out.shape = [3, 5]
1977 1978 1979 1980

        Case2:

          Input:
L
Leo Chen 已提交
1981 1982 1983 1984
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
1985

L
Leo Chen 已提交
1986 1987 1988
        Case4:

          Input:
1989
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
1990
            axis = [0, 2, 3]
1991
          Output:
L
Leo Chen 已提交
1992
            out.shape = [3, 5]
1993

L
Leo Chen 已提交
1994
        Case4:
1995 1996

          Input:
1997
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
1998
            axis = [-2]
1999
          Output:
L
Leo Chen 已提交
2000
            out.shape = [1, 3, 5]
2001 2002

    Args:
2003
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2004
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2005 2006 2007
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2008 2009 2010
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
2011
        Tensor: Squeezed Tensor with the same data type as input Tensor.
2012 2013 2014

    Examples:
        .. code-block:: python
2015

2016
            import paddle
2017

L
Leo Chen 已提交
2018 2019
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2020 2021

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2022
            print(output.shape)  # [5, 10]
2023

2024 2025 2026 2027
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2028
    """
L
Leo Chen 已提交
2029 2030 2031 2032 2033 2034
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2035

2036 2037 2038
    input = x
    axes = axis
    if in_dygraph_mode():
2039
        return _C_ops.squeeze(input, axes)
2040
    if _in_legacy_dygraph():
2041
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2042 2043 2044 2045 2046 2047 2048
        return out

    helper = LayerHelper("squeeze", **locals())
    check_variable_and_dtype(input, 'input', [
        'float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64',
        'complex64', 'complex128'
    ], 'squeeze')
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2061 2062
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2063 2064
    helper.append_op(type="squeeze2",
                     inputs={"X": input},
2065
                     attrs=attrs,
2066 2067 2068 2069
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
2070 2071

    return out
2072 2073


2074
@inplace_apis_in_dygraph_only
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2087 2088 2089
    input = x
    axes = axis
    if in_dygraph_mode():
2090
        return _C_ops.squeeze_(input, axes)
2091
    if _in_legacy_dygraph():
2092
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2093
        return out
2094 2095


D
duanboqiang 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104
def unique_consecutive(x,
                       return_inverse=False,
                       return_counts=False,
                       axis=None,
                       dtype="int64",
                       name=None):
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

2105 2106
    Note:
        This function is different from :func:`paddle.unique` in the sense that this function
D
duanboqiang 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

2128
            import paddle
D
duanboqiang 已提交
2129 2130

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2131
            output = paddle.unique_consecutive(x) #
D
duanboqiang 已提交
2132 2133 2134 2135 2136 2137
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2138
            output = paddle.unique_consecutive(x, axis=0) #
D
duanboqiang 已提交
2139 2140 2141
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2142
            output = paddle.unique_consecutive(x, axis=0) #
D
duanboqiang 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2154
    if in_dygraph_mode():
2155
        out, inverse, counts = _C_ops.unique_consecutive(
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
            x, return_inverse, return_counts, axis, attr_dtype)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2166
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
D
duanboqiang 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
            x, 'dtype', attr_dtype, 'return_inverse', return_inverse,
            'return_counts', return_counts, 'axis', axis)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'],
                             'unique_consecutive')
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
2192 2193 2194 2195 2196 2197
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    counts = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                       stop_gradient=True)
D
duanboqiang 已提交
2198 2199 2200 2201 2202 2203
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
2204 2205 2206 2207
    helper.append_op(type="unique_consecutive",
                     inputs={"X": x},
                     attrs=attrs,
                     outputs=outputs)
D
duanboqiang 已提交
2208 2209 2210 2211 2212
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


Z
Zhang Ting 已提交
2213 2214 2215 2216 2217
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
2218
           dtype="int64",
Z
Zhang Ting 已提交
2219
           name=None):
2220
    r"""
Z
Zhang Ting 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2232 2233
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2234 2235 2236
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2237
    Returns:
2238
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2239 2240 2241 2242 2243
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2244

Z
Zhang Ting 已提交
2245 2246
            import paddle

2247
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2248 2249 2250 2251 2252 2253 2254
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

2255
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2256 2257 2258 2259
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
2260
            np_unique = unique.numpy()
Z
Zhang Ting 已提交
2261 2262 2263 2264 2265 2266 2267
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2268
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2269 2270
    if _non_static_mode():
        if in_dygraph_mode():
2271
            out, indices, inverse, counts = _C_ops.unique(
2272 2273 2274
                x, return_index, return_inverse, return_counts, axis,
                attr_dtype)
        if _in_legacy_dygraph():
2275
            out, inverse, indices, counts = _legacy_C_ops.unique(
2276 2277 2278
                x, 'dtype', attr_dtype, 'return_index', return_index,
                'return_inverse', return_inverse, 'return_counts',
                return_counts, 'axis', axis, "is_sorted", True)
Z
Zhang Ting 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2297
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2298 2299 2300 2301 2302
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2303
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2304 2305 2306 2307 2308 2309
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
2310 2311 2312 2313 2314 2315 2316 2317
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    indices = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    counts = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                       stop_gradient=True)
2318 2319 2320 2321 2322 2323
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
2324 2325 2326 2327 2328 2329 2330 2331
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

2332 2333 2334 2335
    helper.append_op(type="unique",
                     inputs={"X": x},
                     attrs=attrs,
                     outputs=outputs)
Z
Zhang Ting 已提交
2336 2337 2338 2339 2340 2341 2342

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2343
def unsqueeze(x, axis, name=None):
2344
    """
2345 2346 2347
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2348

2349 2350
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2351 2352
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2353
    Args:
2354
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2355 2356
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2357 2358 2359
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2360 2361

    Returns:
2362
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
2363 2364 2365

    Examples:
        .. code-block:: python
2366

2367 2368
            import paddle

2369 2370
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2371

2372 2373
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2374 2375

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2376
            print(out2.shape)  # [1, 5, 1, 10]
2377

L
Leo Chen 已提交
2378
            axis = paddle.to_tensor([0, 1, 2])
2379
            out3 = paddle.unsqueeze(x, axis=axis)
2380
            print(out3.shape)  # [1, 1, 1, 5, 10]
2381 2382 2383 2384 2385 2386

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2387

2388
    """
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2402
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2403
            return out
2404
        return _C_ops.unsqueeze(input, axes)
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
    check_variable_and_dtype(input, 'input', [
        'float16',
        'float32',
        'float64',
        'bool',
        'int8',
        'int16',
        'int32',
        'int64',
        'complex64',
        'complex128',
    ], 'unsqueeze')
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2436 2437 2438 2439 2440 2441 2442
    helper.append_op(type="unsqueeze2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
2443

2444
    return out
2445 2446


2447
@inplace_apis_in_dygraph_only
2448 2449 2450 2451 2452
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2453 2454 2455 2456 2457 2458 2459 2460
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2461
            item.numpy().item(0) if isinstance(item, Variable) else item
2462
            for item in axes
2463
        ]
2464
    if in_dygraph_mode():
2465 2466
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2467
    return out
2468 2469


2470
def gather(x, index, axis=None, name=None):
2471
    """
2472 2473
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2474 2475 2476 2477 2478 2479

    .. code-block:: text


                Given:

2480
                x = [[1, 2],
2481 2482 2483
                     [3, 4],
                     [5, 6]]

2484 2485
                index = [1, 2]
                axis=[0]
2486 2487 2488

                Then:

2489
                out = [[3, 4],
2490
                       [5, 6]]
2491

2492
    Args:
2493
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2494 2495
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2496
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2497
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2498 2499
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2500 2501

    Returns:
2502
        output (Tensor): The output is a tensor with the same rank as ``x``.
2503

2504 2505 2506 2507 2508 2509
    Examples:

        .. code-block:: python

            import paddle

2510 2511
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2512 2513
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2514
    """
2515 2516
    if axis is None:
        axis = 0
2517

2518
    if in_dygraph_mode():
2519
        return _C_ops.gather(x, index, axis)
2520
    if _in_legacy_dygraph():
2521
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
2522 2523
        return _legacy_C_ops.gather(x, index, None, "axis", axis, "overwrite",
                                    False)
2524 2525

    check_variable_and_dtype(
2526 2527
        x, 'x',
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2528 2529
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2530

2531 2532 2533
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2534
    helper = LayerHelper('gather', **locals())
2535
    dtype = helper.input_dtype('x')
2536
    out = helper.create_variable_for_type_inference(dtype)
2537
    if not isinstance(axis, Variable):
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
        helper.append_op(type="gather",
                         inputs={
                             "X": x,
                             "Index": index
                         },
                         attrs={
                             'axis': axis,
                             'overwrite': False
                         },
                         outputs={"Out": out})
2548
    else:
2549 2550 2551 2552 2553 2554 2555 2556
        helper.append_op(type="gather",
                         inputs={
                             "X": x,
                             "Index": index,
                             "Axis": axis
                         },
                         attrs={"overwrite": False},
                         outputs={"Out": out})
2557

2558
    return out
myq406450149's avatar
myq406450149 已提交
2559 2560 2561 2562


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2563

myq406450149's avatar
myq406450149 已提交
2564
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2565

myq406450149's avatar
myq406450149 已提交
2566
    Args:
2567
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
2568
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2569
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2570
    Returns:
2571
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2572 2573 2574

    Example:
        .. code-block:: python
2575

myq406450149's avatar
myq406450149 已提交
2576
            import paddle
2577

C
Chen Long 已提交
2578 2579
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2580

2581
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2582 2583 2584
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2585

2586
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2587 2588 2589 2590 2591
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2592
    if in_dygraph_mode():
2593
        return _C_ops.unbind(input, axis)
2594

myq406450149's avatar
myq406450149 已提交
2595 2596 2597 2598 2599 2600 2601 2602
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2603
    if _in_legacy_dygraph():
2604
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2605 2606 2607 2608 2609 2610

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
2611 2612 2613 2614
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2615 2616 2617 2618
    helper.append_op(type="unbind",
                     inputs={"X": input},
                     outputs={"Out": outs},
                     attrs={"axis": axis})
myq406450149's avatar
myq406450149 已提交
2619
    return outs
L
lilong12 已提交
2620 2621


S
ShenLiang 已提交
2622 2623 2624 2625
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2626

S
ShenLiang 已提交
2627
    .. code-block:: python
2628

S
ShenLiang 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

2650
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2651 2652 2653 2654 2655 2656
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
2657 2658
        overwrite (bool): The mode that updating the output when there are same indices.

S
sunzhongkai588 已提交
2659
            If True, use the overwrite mode to update the output of the same index,
2660
            if False, use the accumulate mode to update the output of the same index.Default value is True.
2661

S
ShenLiang 已提交
2662
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2663

S
ShenLiang 已提交
2664 2665 2666 2667 2668
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
2669

S
ShenLiang 已提交
2670 2671
            import paddle

2672 2673 2674
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2675

S
ShenLiang 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2696
    if in_dygraph_mode():
2697
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2698 2699
    else:
        if _in_legacy_dygraph():
2700 2701
            return _legacy_C_ops.scatter(x, index, updates, 'overwrite',
                                         overwrite)
J
Jiabin Yang 已提交
2702 2703
        else:
            check_variable_and_dtype(
2704 2705
                x, 'dtype', ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter')
J
Jiabin Yang 已提交
2706 2707 2708
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
2709 2710 2711 2712 2713 2714 2715 2716
            helper.append_op(type="scatter",
                             inputs={
                                 "X": x,
                                 "Ids": index,
                                 "Updates": updates
                             },
                             attrs={'overwrite': overwrite},
                             outputs={"Out": out})
J
Jiabin Yang 已提交
2717
            return out
S
ShenLiang 已提交
2718 2719


2720
@inplace_apis_in_dygraph_only
2721 2722 2723 2724 2725
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2726
    if in_dygraph_mode():
2727 2728
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2729 2730


2731
def scatter_nd_add(x, index, updates, name=None):
2732
    r"""
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2774
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
2792 2793 2794
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
2795

2796
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
2797 2798
            print(output.shape)
            # [3, 5, 9, 10]
2799
    """
2800
    if in_dygraph_mode():
2801
        return _C_ops.scatter_nd_add(x, index, updates)
2802 2803
    else:
        if _in_legacy_dygraph():
2804
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
2805 2806 2807 2808 2809 2810 2811 2812
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
2813 2814 2815 2816 2817 2818 2819
            helper.append_op(type="scatter_nd_add",
                             inputs={
                                 "X": x,
                                 "Index": index,
                                 "Updates": updates
                             },
                             outputs={"Out": output})
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
2864 2865


2866 2867 2868
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
2869

2870 2871 2872
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
2873
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
2874 2875 2876 2877 2878 2879
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
2880

2881
    Examples:
2882
        .. code-block:: python
2883

2884
            import paddle
2885

2886
            x = paddle.rand([3, 9, 5])
2887

2888
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
2889 2890 2891 2892
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

2893

2894 2895 2896 2897 2898 2899 2900 2901
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
2902
    return split(x, num_or_sections=chunks, axis=axis, name=name)
2903 2904


L
lilong12 已提交
2905 2906
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
2907 2908

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
2909
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
2910 2911 2912

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
2913
    Args:
L
lilong12 已提交
2914
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
2915
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
2916 2917 2918
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
2919
    Returns:
2920
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
2921

L
lilong12 已提交
2922 2923
    Examples:
        .. code-block:: python
L
lilong12 已提交
2924

L
lilong12 已提交
2925
            import paddle
L
lilong12 已提交
2926

2927
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
2928
            out = paddle.tile(data, repeat_times=[2, 1])
2929
            np_out = out.numpy()
2930 2931
            # [[1, 2, 3]
            #  [1, 2, 3]]
L
lilong12 已提交
2932

2933
            out = paddle.tile(data, repeat_times=(2, 2))
2934
            np_out = out.numpy()
2935 2936
            # [[1, 2, 3, 1, 2, 3]
            #  [1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2937

2938
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
2939
            out = paddle.tile(data, repeat_times=repeat_times)
2940
            np_out = out.numpy()
2941
            # [[1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2942
    """
H
hong 已提交
2943
    if in_dygraph_mode():
2944
        if isinstance(repeat_times, core.eager.Tensor):
2945
            assert repeat_times.ndim == 1, "Only support ndim == 1 while repeat_times is a Tensor."
2946 2947
            repeat_times = repeat_times.numpy().tolist()

2948
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
2949 2950

    if _in_legacy_dygraph():
2951
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
2952

2953 2954
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
2955 2956
        assert len(
            repeat_times.shape) == 1, ('repeat_times must be an 1-D Tensor.')
2957 2958 2959 2960 2961 2962
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
2963
                type_tuple = (int, np.int32, np.int64)
2964 2965
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
2966

2967 2968 2969
    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'tile')
L
lilong12 已提交
2970
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
2971 2972
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
2973
            "must set its stop_gradient to be True by "
2974 2975 2976
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
2977

L
lilong12 已提交
2978 2979 2980
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
2981 2982 2983 2984 2985 2986 2987 2988
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
2989
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
2990 2991 2992 2993
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
2994 2995
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
2996 2997 2998
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
2999 3000
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)
L
lilong12 已提交
3001 3002 3003

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3004 3005 3006 3007
    helper.append_op(type='tile',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
L
lilong12 已提交
3008
    return out
3009 3010


L
lilong12 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3020
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3031 3032
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3033
            out = paddle.expand_as(data_x, data_y)
3034
            np_out = out.numpy()
L
lilong12 已提交
3035 3036
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3037
    if in_dygraph_mode():
3038
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3039

H
hong 已提交
3040
    if _non_static_mode():
3041
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3042

3043 3044 3045
    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'expand_as')
L
lilong12 已提交
3046 3047 3048 3049 3050 3051 3052 3053
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
3054
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3055

3056
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3057 3058
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3059 3060 3061 3062
    helper.append_op(type='expand_as_v2',
                     inputs=inputs,
                     attrs={'target_shape': y.shape},
                     outputs={'Out': out})
L
lilong12 已提交
3063 3064 3065
    return out


3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3077
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3078
            The value -1 in shape means keeping the corresponding dimension unchanged.
3079
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3093
    if in_dygraph_mode():
3094
        return _C_ops.expand(x, shape)
3095
    if _in_legacy_dygraph():
3096
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3097 3098 3099 3100 3101 3102 3103 3104 3105

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3106
                type_tuple = (int, np.int32, np.int64)
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3149 3150 3151 3152
    helper.append_op(type='expand_v2',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
3153 3154 3155
    return out


3156 3157 3158 3159 3160
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3161
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3162 3163 3164


    Args:
C
Chen Long 已提交
3165
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3166
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3167
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3168
            The value -1 in shape means keeping the corresponding dimension unchanged.
3169 3170 3171
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
3172
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
3173 3174 3175 3176 3177 3178

    Examples:
        .. code-block:: python

            import paddle

3179
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3180
            out = paddle.expand(data, shape=[2, 3])
3181
            print(out)
3182 3183
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3184
    if in_dygraph_mode():
3185
        return _C_ops.expand(x, shape)
H
hong 已提交
3186

Z
zhiboniu 已提交
3187
    if paddle.in_dynamic_mode():
3188
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3189

3190 3191 3192 3193 3194 3195 3196 3197
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3198
                type_tuple = (int, np.int32, np.int64)
3199 3200 3201
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

3202
    check_variable_and_dtype(
3203 3204
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
3205
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
3206
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
3207 3208
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
3209
                         "some_var.stop_gradient = True, supporting "
3210 3211
                         "some_var as the input.")

3212 3213 3214
    inputs = {"X": [x]}
    attrs = {}

3215
    helper = LayerHelper('expand', **locals())
3216 3217 3218 3219 3220

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3221
                attrs_expand_shape.append(-2)
3222 3223 3224
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
3225
                    "All elements in shape of expand must be positive or -1.")
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3239 3240 3241 3242
    helper.append_op(type='expand_v2',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
3243
    return out
L
lilong12 已提交
3244 3245


3246 3247
def reshape(x, shape, name=None):
    """
3248
    Changes the shape of ``x`` without changing its data.
3249

3250
    Note that the output Tensor will share data with origin Tensor and doesn't
3251 3252
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3253 3254
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3255 3256
    Some tricks exist when specifying the target shape.

3257
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3258

3259
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3260 3261 3262

    Here are some examples to explain it.

3263
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3264

3265
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3266

3267
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3268 3269

    Args:
3270 3271
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3272 3273
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3274
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3275 3276 3277 3278 3279 3280 3281 3282 3283

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3284 3285
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3286

3287 3288 3289
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3290

3291 3292
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3293
            # the shape of out_2 is [4, 12].
3294

3295
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3296
            out = paddle.reshape(x, shape=shape_tensor)
3297
            print(out.shape)
3298
            # the shape is [8, 6].
3299 3300 3301 3302 3303
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3304
    """
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        #TODO(zhiqiu): enable inplace in dygraph mode.
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3318 3319
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in shape
3320
            ]
3321
            out = _C_ops.reshape(x, shape)
3322 3323
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3324
            out = _C_ops.reshape(x, shape)
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3343
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3344 3345
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3346
                out, _ = _legacy_C_ops.reshape2(x, shape)
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
                    " got '{}.'".format(type(shape)))

            return dygraph_utils._append_activation_in_dygraph(out, act)

    check_variable_and_dtype(x, 'x', [
        'float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'bool',
        'uint16'
    ], 'reshape')
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
                        % dim_idx)
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
3415 3416 3417 3418 3419 3420 3421
    helper.append_op(type="reshape2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
3422 3423

    return helper.append_activation(out)
3424 3425


3426
@inplace_apis_in_dygraph_only
3427 3428 3429 3430 3431
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3432 3433 3434 3435 3436 3437 3438
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in shape
            ]
3439
            out = _C_ops.reshape_(x, shape)
3440 3441
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3442
            out = _C_ops.reshape_(x, shape)
3443 3444 3445 3446 3447
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

3448
        return out
3449 3450 3451 3452 3453 3454
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3455
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3456 3457 3458 3459 3460 3461 3462 3463 3464
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3465
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3466
            return out
3467 3468


3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3488 3489 3490 3491 3492 3493 3494
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3495 3496 3497 3498

            * Case 1:
                index = [[1]]

3499 3500
                gather_nd(x, index)
                         = [x[1, :, :]]
3501 3502 3503 3504 3505 3506 3507
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3508 3509
                gather_nd(x, index)
                         = [x[0, 2, :]]
3510 3511 3512 3513 3514
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3515 3516
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3517 3518 3519 3520 3521 3522
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3523
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3524 3525 3526

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3527

3528 3529 3530
    Examples:

        .. code-block:: python
3531

3532
            import paddle
3533

3534 3535 3536
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3537

3538 3539 3540
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3541
    if in_dygraph_mode():
3542
        return _C_ops.gather_nd(x, index)
3543 3544
    else:
        if _in_legacy_dygraph():
3545
            return _legacy_C_ops.gather_nd(x, index)
3546 3547 3548 3549 3550 3551 3552
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
3553 3554 3555 3556 3557 3558
    helper.append_op(type="gather_nd",
                     inputs={
                         "X": x,
                         "Index": index
                     },
                     outputs={"Out": output})
3559
    return output
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3608

3609
    Args:
3610
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3637
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3638 3639
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3640
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3641 3642 3643
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3644
    if in_dygraph_mode():
3645
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3646

3647 3648
    helper = LayerHelper('strided_slice', **locals())

3649 3650 3651
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice')
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
            check_dtype(list_input.dtype, input_name, ['int32'],
                        'strided_slice')
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3689
    if _in_legacy_dygraph():
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
3752 3753 3754 3755
    helper.append_op(type='strided_slice',
                     inputs=inputs,
                     attrs=attrs,
                     outputs={'Out': out})
3756 3757

    return out
F
From00 已提交
3758 3759 3760 3761


def tensordot(x, y, axes=2, name=None):
    r"""
3762
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
3763 3764 3765 3766 3767 3768

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

3769
            1. It could be a non-negative integer ``n``,
F
From00 已提交
3770
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
3771 3772

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
3773
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
3774 3775 3776 3777

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
3778
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
3779 3780 3781

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
3782
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
3783
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
3784 3785
                             For more information, please refer to :ref:`api_guide_Name` .

3786 3787
    Return:
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
3788
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
3789

F
From00 已提交
3790
    NOTES:
3791
        1. This function supports tensor broadcast,
F
From00 已提交
3792
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
3793 3794 3795 3796 3797
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
3798
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
3799

F
From00 已提交
3800 3801 3802 3803 3804 3805 3806 3807
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
3808
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
3870
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
3880
        if paddle.in_dynamic_mode():
F
From00 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
            return tolist(var)
        raise TypeError(
            "The 'axes' with type 'Tensor' in " + op_type +
            " is not available in static graph mode, "
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
            "The 'axes' in " + op_type +
            f" should not be negative, but received axes={axes}.")
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
            assert sx == sy, "The dimensional size for 'x' and 'y' in " + op_type + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
        [not_contraction_size_x, contraction_size])
    y = y.transpose(perm=perm_y).reshape(
        [contraction_size, not_contraction_size_y])
    out = x.matmul(y).reshape(shape_out)
    return out
3966 3967 3968


def as_complex(x, name=None):
3969 3970
    """Transform a real tensor to a complex tensor.

3971 3972 3973
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

3974
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
3975 3976 3977 3978 3979 3980 3981 3982 3983
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
3984

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            print(y.numpy())

            # [[ 0. +1.j  2. +3.j  4. +5.j]
            #  [ 6. +7.j  8. +9.j 10.+11.j]]
    """
3996 3997
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
3998 3999
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(x.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
4014 4015 4016
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
4029

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
            print(z.numpy())

            # [[[ 0.  1.]
            #   [ 2.  3.]
            #   [ 4.  5.]]

            #  [[ 6.  7.]
            #   [ 8.  9.]
            #   [10. 11.]]]
    """
4047 4048
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4049 4050
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4061 4062


K
kuizhiqing 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4072
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4073 4074 4075 4076 4077 4078 4079
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

4080 4081 4082 4083 4084
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4103 4104
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4105 4106
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4107 4108 4109 4110 4111 4112 4113

    helper = LayerHelper("repeat_interleave", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.manipulation.repeat_interleave')

    out = helper.create_variable_for_type_inference(x.dtype)

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
    helper.append_op(type='repeat_interleave',
                     inputs={
                         'X':
                         x,
                         'RepeatsTensor':
                         repeats if isinstance(repeats, Variable) else None
                     },
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'Repeats': repeats if isinstance(repeats, int) else 0
                     })
K
kuizhiqing 已提交
4126 4127 4128
    return out


4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
4147

4148 4149 4150 4151 4152 4153 4154
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4155
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4156
            # [3, 2]
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
        dst), "'source' must have the same number with 'destination'"

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
        assert isinstance(axis[0],
                          int), "Each elemment of 'source' must be integer."
        if axis[0] < 0:
            assert axis[
                0] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            src[i] += ndim
        else:
            assert axis[
                0] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)

        assert isinstance(axis[1],
                          int), "Each elemment of 'source' must be integer."
        if axis[1] < 0:
            assert axis[
                1] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            dst[i] += ndim
        else:
            assert axis[
                1] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4209
    if in_dygraph_mode():
4210
        out = _C_ops.transpose(x, perm)
4211 4212 4213
        return out

    if _in_legacy_dygraph():
4214
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4215 4216
        return out

4217 4218 4219 4220
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'moveaxis')
4221 4222 4223 4224

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
4225 4226 4227 4228 4229 4230 4231
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
4232
    return out
4233 4234


4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
        assert axis < ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
    else:
        assert axis >= -ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4249
    # This function is used in take/put_along_axis
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4260 4261 4262 4263 4264
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4265
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4266
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4267
            and need to broadcast against arr. Supported data type are int and int64.
4268
        axis (int) : The axis to take 1d slices along.
4269

4270
    Returns:
4271
        Tensor: The indexed element, same dtype with arr
4272

4273 4274 4275 4276 4277
    Examples:
        .. code-block:: python

            import paddle

4278 4279
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4280 4281 4282 4283 4284
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4285 4286 4287 4288 4289 4290 4291 4292
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4293
    if _non_static_mode():
4294
        indices = paddle.broadcast_to(indices, broadcast_shape)
4295 4296 4297 4298
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4299
        if not _in_legacy_dygraph():
4300 4301
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4302 4303 4304 4305 4306
    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'take_along_axis')
4307
    indices = paddle.broadcast_to(indices, broadcast_shape)
4308 4309 4310 4311
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4312 4313 4314
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4315 4316 4317 4318 4319 4320 4321
    helper.append_op(type="take_along_axis",
                     inputs={
                         "Input": arr,
                         "Index": indices
                     },
                     attrs={"Axis": axis},
                     outputs={"Result": result})
4322
    return result
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4333
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4334 4335 4336
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
4337
        Tensor: The indexed element, same dtype with arr
4338

4339 4340 4341 4342 4343
    Examples:
        .. code-block:: python

            import paddle

4344 4345
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4346 4347 4348 4349 4350 4351 4352 4353
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4354 4355 4356 4357 4358
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4359
    if _non_static_mode():
4360 4361
        values = paddle.to_tensor(values) if not isinstance(
            values, paddle.Tensor) else values
4362 4363 4364
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4365
        if in_dygraph_mode():
4366 4367 4368
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
        return _legacy_C_ops.put_along_axis(arr, indices, values, "Axis", axis,
                                            "Reduce", reduce)
4369 4370 4371 4372 4373 4374

    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'put_along_axis')
4375 4376 4377
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4378 4379 4380
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
    helper.append_op(type="put_along_axis",
                     inputs={
                         "Input": arr,
                         "Index": indices,
                         "Value": values
                     },
                     attrs={
                         "Axis": axis,
                         "Reduce": reduce
                     },
                     outputs={"Result": result})
4392 4393 4394 4395 4396 4397
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4398
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4399 4400
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4401 4402 4403 4404 4405
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4406 4407
    values = paddle.to_tensor(values) if not isinstance(
        values, paddle.Tensor) else values
4408 4409 4410
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4411
    if in_dygraph_mode():
4412 4413 4414
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
    return _legacy_C_ops.put_along_axis_(arr, indices, values, "Axis", axis,
                                         "Reduce", reduce)
4415 4416


L
Li Min 已提交
4417 4418 4419 4420 4421 4422 4423 4424
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4425
        axis (int): The dimension in which we index.
L
Li Min 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: same dimention and dtype with x.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4442 4443 4444 4445 4446
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.manipulation.index_add')
    check_variable_and_dtype(
        value, 'add_value', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add')

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(type='index_add',
                     inputs={
                         'X': x,
                         'Index': index,
                         'AddValue': value,
                     },
                     outputs={'Out': out},
                     attrs={'axis': axis})
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4478
    Please refer to :ref:`api_paddle_index_add`.
4479

L
Li Min 已提交
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4490 4491 4492 4493 4494
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4495 4496 4497 4498
    """
    return _C_ops.index_add_(x, index, value, axis)


4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
    'tolist': tolist
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)