__init__.py 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging

import paddle.fluid as fluid
import paddle.fluid.io as io
import paddle.fluid.transpiler.distribute_transpiler as dist_transpiler
19 20 21 22
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.framework import Program
23

T
tangwei12 已提交
24 25 26
from paddle.fluid.incubate.fleet.base.fleet_base import Fleet
from paddle.fluid.incubate.fleet.base.fleet_base import Mode
from paddle.fluid.incubate.fleet.base.fleet_base import DistributedOptimizer
27

28
from paddle.fluid import compiler
29
from paddle.distributed.fs_wrapper import LocalFS, BDFS
30

31 32
import os
import sys
33
import six
34 35 36
import json
import re
import shutil
37 38 39


class LambConfig(object):
40
    def __init__(self):
41 42 43 44
        pass


class DistFCConfig(object):
45
    def __init__(self):
46
        pass
47 48


49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class TrainStatus(object):
    def __init__(self, epoch_no=-1):
        # completed epoch
        self._epoch_no = epoch_no

    def next(self):
        return self._epoch_no + 1

    def __eq__(self, t):
        return self._epoch_no == t._epoch_no

    def __ne__(self, t):
        return not self == t


64 65 66
class Collective(Fleet):
    def __init__(self):
        super(Collective, self).__init__(Mode.COLLECTIVE)
T
tangwei12 已提交
67
        self._local_ip = 0
68

69 70
        self.startup_program = None
        self._origin_program = None
71
        self._transpiled_program = None
72
        self.main_program = None
73 74
        self._checkoint_prefix = "__paddle_fleet_checkpoint__"
        self._param_file_name = "_paddle_fleet_param__"
75

T
tangwei12 已提交
76
    def init_worker(self):
77 78 79
        logging.warn(
            "You should not call 'init_worker' method for collective mode.")

T
tangwei12 已提交
80
    def run_worker(self, main_programs=None, scopes=None):
81 82 83
        logging.warn(
            "You should not call 'run_worker' method for collective mode.")

T
tangwei12 已提交
84
    def init_server(self, model_dir=None):
85 86 87
        logging.warn(
            "You should not call 'init_server' method for collective mode.")

T
tangwei12 已提交
88
    def run_server(self):
89 90 91 92 93 94 95 96
        logging.warn(
            "You should not call 'run_server' method for collective mode.")

    def stop_worker(self):
        logging.warn(
            "You should not call 'stop_worker' method for collective mode.")

    def distributed_optimizer(self, optimizer, strategy=None):
97
        self._optimizer = \
98
            CollectiveOptimizer(optimizer, strategy)
T
tangwei12 已提交
99
        return self._optimizer
100 101

    def save_inference_model(self,
102
                             executor,
103 104 105 106 107
                             dirname,
                             feeded_var_names=None,
                             target_vars=None,
                             main_program=None,
                             export_for_deployment=True):
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        """
        Prune the given `main_program` to build a new program especially for
        inference, and then save it and all related parameters to given
        `dirname` by the `executor`.
        """
        assert isinstance(executor, Executor), \
            "In fleet.save_inference_model() function, executor must be as" \
            " Executor type."

        if main_program is None:
            main_program = self._origin_program
        assert isinstance(main_program, Program), \
            "In fleet.save_inference_model() function, main_program " \
            "must be as Program type."

123
        io.save_inference_model(dirname, feeded_var_names, target_vars,
124
                                executor, main_program, None, None,
125 126
                                export_for_deployment)

127 128 129 130 131
    def save_persistables(self,
                          executor,
                          dirname,
                          main_program=None,
                          filename=None):
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        """
        This function filters out all variables with `persistable==True` from
        the give `main_program` and then saves these variables to the folder
        `dirname` or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """
        assert isinstance(executor, Executor), \
            "In fleet.save_inference_model() function, executor must be as" \
            " Executor type."

        if main_program is None:
            main_program = self._origin_program

        assert isinstance(main_program, Program), \
            "In fleet.save_inference_model() function, main_program " \
            "must be as Program type."

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        io.save_persistables(executor, dirname, main_program, filename=filename)

    def _save_train_status(self, path, train_status):
        d = {}
        d["epoch_no"] = train_status._epoch_no

        file_name = "{}/fleet_train_status".format(path)
        with open(file_name, 'w') as f:
            json.dump(d, f)

    def _load_train_status(self, path):
        file_name = "{}/fleet_train_status".format(path)

        r = TrainStatus()
        if not os.path.isfile(file_name):
            return r

        d = {}
        with open(file_name, 'r') as f:
            d = json.load(f)

        assert "epoch_no" in d, "Can't find epoch_no in dict from train_status file:{}".format(
            d)
        r._epoch_no = d["epoch_no"]
        assert r._epoch_no >= 0, "Data in checkpoint file is not valid:{}".format(
            d)

        return r

    def _get_last_checkpoint_no(self, root_path, fs):
        """
        only get the first depth
        """
        max_no = -1
        d = {}
        dirs = fs.list_dirs(root_path)
        for dir in dirs:
            g = dir.split(".")
            if len(g) != 2:
                continue

            if g[0] != "__paddle_fleet_checkpoint__":
                continue

            try:
                n = int(g[1])
                if n > max_no:
                    max_no = n
            except:
                continue

        return max_no

    def clean_redundant_check_points(self,
                                     root_path,
                                     fs=LocalFS(),
                                     checkpoint_num=1):
        max_no = self._get_last_checkpoint_no(root_path, fs)
        if max_no < 0:
            return

        if checkpoint_num < 1:
            checkpoint_num = 1

        dirs = fs.list_dirs(root_path)
        for dir in dirs:
            g = dir.split(".")
            if len(g) != 2:
                continue

            if g[0] != self._checkoint_prefix:
                continue

            try:
                n = int(g[1])
                if n <= max_no - checkpoint_num:
                    path = "{}/{}.{}".format(root_path, self._checkoint_prefix,
                                             n)
                    fs.rmr(path)
            except Exception as e:
                print(e)
                continue

    def save_check_point(self,
                         executor,
                         path,
                         train_status,
                         main_program=None,
                         fs=LocalFS(),
                         local_cache_path=".cache",
                         remain_all_checkpoint=True):
        """
        This function save persistables and current epoch num to path.
        """

        if main_program == None:
            main_program = self._transpiled_program

        if not fs.stat(path):
            fs.mkdir(path)

        max_no = self._get_last_checkpoint_no(path, fs=fs)
        if max_no < 0:
            max_no = -1

        real_path = "{}/{}.{}".format(path, self._checkoint_prefix, max_no + 1)
        tmp_path = "{}.tmp".format(real_path)
        saved_path = tmp_path

        local_fs = LocalFS()

        cache_path = None
        if fs.need_upload_download():
            cache_path = "{}/{}.{}.saved_cache".format(
                local_cache_path, self._checkoint_prefix, max_no + 1)
            if not local_fs.stat(cache_path):
                local_fs.mkdir(cache_path)
            saved_path = cache_path

        self.save_persistables(
            executor=executor,
            dirname=saved_path,
            main_program=main_program,
            filename=self._param_file_name)
        self._save_train_status(path=saved_path, train_status=train_status)

        if fs.need_upload_download():
            fs.delete(tmp_path)
            fs.upload(cache_path, tmp_path)
        fs.mv(tmp_path, real_path)

        if not remain_all_checkpoint:
            self.clean_redundant_check_points(path)

    def load_check_point(self,
                         executor,
                         path,
                         trainer_id,
                         main_program=None,
                         fs=LocalFS(),
                         local_cache_path=".cache",
                         ignore_empty=True):
        """
        This function load persistables and current epoch num from path.
        """
        max_no = self._get_last_checkpoint_no(path, fs)

        if not ignore_empty:
            assert max_no >= 0, "Can't find checkpoint"

        if max_no < 0:
            return None

        local_fs = LocalFS()
        if fs.need_upload_download():
            cache_path = "{}/{}.{}.load_cache.{}".format(
                local_cache_path, self._checkoint_prefix, max_no, trainer_id)
            if local_fs.stat(cache_path):
                local_fs.delete(cache_path)

        real_path = "{}/{}.{}".format(path, self._checkoint_prefix, max_no)
        load_path = real_path
        if fs.need_upload_download():
            fs.download(real_path, cache_path)
            load_path = cache_path

        if main_program == None:
            main_program = self._transpiled_program

        io.load_persistables(
            executor=executor,
            dirname=load_path,
            main_program=main_program,
            filename=self._param_file_name)

        return self._load_train_status(load_path)
329

330 331 332 333

fleet = Collective()


334 335 336 337 338 339 340 341 342 343 344 345 346
class DistributedStrategy(fluid.BuildStrategy):
    """
    Init function of DistributedStrategy
    """

    def __init__(self):
        super(DistributedStrategy, self).__init__()
        self.use_local_sgd = False
        self.use_dist_fc = False

        self.dist_fc_config = None  # DistFCConfig
        self.mode = "nccl2"  # or collective
        self.collective_mode = None  # local_sgd or grad_allreduce
G
gongweibao 已提交
347
        self.nccl_comm_num = 1
348
        self.forward_recompute = False  # use RecomputeOptimizer
M
mapingshuo 已提交
349
        self.recompute_checkpoints = []
350 351
        self.use_amp = False  # use mixed precision optimizer
        self.amp_loss_scaling = 2**15
352 353 354

        self.exec_strategy = fluid.ExecutionStrategy()

355 356 357
        # configurations below are used for unit test
        self._ut4grad_allreduce = False

358

359 360
class CollectiveOpBasedOptimizer(DistributedOptimizer):
    """
361 362
    Collective Operator Base Class For Distributed Optimizer
    The class is invisible to a user
363 364 365
    """

    def __init__(self, optimizer, strategy=None):
366 367 368
        assert isinstance(
            strategy,
            DistributedStrategy), "strategy must be DistributedStrategy"
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        super(CollectiveOpBasedOptimizer, self).__init__(optimizer, strategy)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        return self._optimizer.backward(loss, startup_program, parameter_list,
                                        no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)


384 385 386 387 388 389 390 391 392 393 394
class CollectiveOptimizer(DistributedOptimizer):
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.
    """

395
    def __init__(self, optimizer, strategy=DistributedStrategy()):
396 397
        if strategy is None:
            strategy = DistributedStrategy()
398
        super(CollectiveOptimizer, self).__init__(optimizer, strategy)
399 400 401 402 403 404 405
        self._forward_recompute = strategy.forward_recompute
        if (not isinstance(strategy.recompute_checkpoints, list)):
            raise ValueError("DistStrategy.recompute_checkpoints should"
                             "be a List")
        self._recompute_checkpoints = strategy.recompute_checkpoints
        self._use_amp = strategy.use_amp
        self._amp_loss_scaling = strategy.amp_loss_scaling
406
        self.print_config = False
407 408 409 410 411 412 413 414 415 416 417 418 419

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        return self._optimizer.backward(loss, startup_program, parameter_list,
                                        no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)

420
    def _check_condition(self, name, **kwargs):
421
        for k, v in six.iteritems(kwargs):
422 423 424 425 426
            if v is True:
                assert False, "you can't use %s and %s together" % (name, k)

    def _check_collective_mode(self, main_program, optimizer, strategy):
        """
T
tianshuo78520a 已提交
427
        Check the conflict conditions.
428 429
        """
        if strategy.use_local_sgd:
430 431
            strategy.mode = "collective"
            strategy.collective_mode = "local_sgd"
432 433 434 435 436 437 438 439 440 441 442 443 444 445
            self._check_condition(
                "use_local_sgd",
                use_dgc=main_program._enable_dgc,
                use_dist_fc=strategy.use_dist_fc,
                use_lamb=main_program._use_lamb)

        if strategy.use_dist_fc:
            self._check_condition(
                "use_dist_fc",
                use_dgc=main_program._enable_dgc,
                use_local_sgd=strategy.use_local_sgd,
                use_lamb=main_program._use_lamb)
            assert strategy.dist_fc_config is not None, "DistributedStrategy.dist_fc_config should be set"

446 447 448 449 450 451 452 453
        if strategy._ut4grad_allreduce:
            strategy.mode = "collective"
            strategy.collective_mode = "grad_allreduce"
            self._check_condition(
                "_ut4grad_allreduce",
                use_dgc=main_program._enable_dgc,
                use_lamb=main_program._use_lamb)

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        if self._strategy.collective_mode=="local_sgd" \
                or self._strategy.collective_mode == "grad_allreduce":
            assert self._strategy.mode == "collective", \
                "local_sgd and grad_allreduce can be used under collective mode"

    def _transpile(self, startup_program, main_program):
        """
        Transpile the programs to distributed programs. And add the variables.
        """
        worker_endpoints = fleet.worker_endpoints()
        trainer_id = fleet.worker_index()
        current_endpoint = fleet.worker_endpoints()[trainer_id]
        worker_endpoints_env = ','.join(worker_endpoints)
        trainers_num = fleet.worker_num()

        if self.print_config:
            print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
                  trainer_id:{}".format(worker_endpoints, trainers_num,
                                        current_endpoint, trainer_id))

        # call transpiler
        config = dist_transpiler.DistributeTranspilerConfig()
        config.mode = self._strategy.mode
        config.collective_mode = self._strategy.collective_mode

        config.nccl_comm_num = self._strategy.nccl_comm_num
        config.use_hierarchical_allreduce = self._strategy.use_hierarchical_allreduce
        config.hierarchical_allreduce_inter_nranks = self._strategy.hierarchical_allreduce_inter_nranks

        t = dist_transpiler.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id=trainer_id,
            trainers=worker_endpoints_env,
            startup_program=startup_program,
            program=main_program,
            current_endpoint=current_endpoint)

G
gongweibao 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    def _get_node_ips_from_endpoints(self, endpoints):
        ss = set()
        ips = []
        for ep in endpoints:
            ip = ep.split(":")[0].strip()
            if ip not in ss:
                ss.add(ip)
                ips.append(ip)
            else:
                continue

        return ips

    def _node_num(self):
        worker_endpoints = fleet.worker_endpoints()
        current_endpoint = fleet.worker_endpoints()[fleet.worker_index()]
        worker_endpoints_env = ','.join(worker_endpoints)

        node_ips = self._get_node_ips_from_endpoints(worker_endpoints)
        node_ip = current_endpoint.split(":")[0].strip()

        node_num = len(node_ips)

        return node_num

516
    def _try_to_compile(self, startup_program, main_program):
G
gongweibao 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
        node_num = self._node_num()
        assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num

        exec_strategy = self._strategy.exec_strategy

        if node_num <= 1:
            if self._strategy.nccl_comm_num > 1:
                logging.warn("set nccl_comm_num=1 since you only have 1 node.")
            self._strategy.nccl_comm_num = 1

            if self._strategy.use_hierarchical_allreduce:
                logging.warn(
                    "set use_hierarchical_allreduce=False since you only have 1 node."
                )
            self._strategy.use_hierarchical_allreduce = False

        sync_allreduce = os.getenv("FLAGS_sync_nccl_allreduce")
        if sync_allreduce is None or sync_allreduce == "1":
            exec_strategy.num_threads = self._strategy.nccl_comm_num + 1
            if self._strategy.use_hierarchical_allreduce:
                exec_strategy.num_threads = 2 * self._strategy.nccl_comm_num + 1
            if exec_strategy.num_threads > 4:
                logging.warn(
                    "if you use use_hierarchical_allreduce or "
                    "with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0"
                )

544 545 546 547 548 549 550 551 552 553 554
        # NOTE. open sync_batch_norm will hang when use multi num_threads
        sync_batch_norm = self._strategy.sync_batch_norm
        if sync_batch_norm is not None and sync_batch_norm is True:
            self._strategy.nccl_comm_num = 1
            self._strategy.use_hierarchical_allreduce = False
            exec_strategy.num_threads = 1
            logging.warn(
                "use sync_batch_norm will hang when set num_threads > 1, so "
                "set num_threads=1, nccl_comm_num=1, use_hierarchical_allreduce=False."
            )

G
gongweibao 已提交
555 556 557 558 559 560 561
        if self.print_config:
            print("node_num:", node_num, "num_threads:",
                  exec_strategy.num_threads, "use_hierarchical_allreduce:",
                  self._strategy.use_hierarchical_allreduce, "nccl_comm_num:",
                  self._strategy.nccl_comm_num, "FLAGS_sync_nccl_allreduce:",
                  sync_allreduce)

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        self._transpile(startup_program, main_program)

        if self._strategy.mode == "collective":
            return main_program

        self._strategy.num_trainers = fleet.worker_num()
        self._strategy.trainer_id = fleet.worker_index()
        self._strategy.trainers_endpoints = fleet.worker_endpoints()
        self._strategy.enable_backward_optimizer_op_deps = True

        self._compiled_program = compiler.CompiledProgram(main_program)

        self._compiled_program.with_data_parallel(
            loss_name=self._loss.name,
            build_strategy=self._strategy,
            exec_strategy=self._strategy.exec_strategy,
            share_vars_from=None)

        return self._compiled_program

582 583 584 585
    def raiseOptimizeError(self, strategy_name, optimize_name):
        raise ValueError("can not use {0} when you set DistStrategy.{1} "
                         "as True".format(optimize_name, strategy_name))

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        minimize a program through loss
        Args:
            loss (Variable|Variable List): loss variable or loss variable list to run optimization.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        Note that in parameter server mode, a worker will not get anything about optimize_os
T
tianshuo78520a 已提交
603
        Because optimizer algorithms run on pserver side. We will make this usable in pserver
604 605 606
        process, but currently the optimization part is written into Fleet(). A user does not
        need to care about how to startup a pserver node.
        """
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

        # check optimizer conflicts
        if self._forward_recompute:
            if self._recompute_checkpoints == []:
                raise ValueError("please set strategy.recompute_checkpoints"
                                 "when set strategy.forward_recompute as True")
            if self._optimizer.__class__.__name__ in [
                    "RecomputeOptimizer", "OptimizerWithMixedPrecision"
            ]:
                self.raiseOptimizeError("forward_recompute",
                                        self._optimizer.__class__.__name__)

            self._optimizer = \
                fluid.optimizer.RecomputeOptimizer(self._optimizer)
            self._optimizer._set_checkpoints(self._recompute_checkpoints)

        if self._use_amp:
            if self._optimizer.__class__.__name__ in [
                    "OptimizerWithMixedPrecision", "DGCMomentumOptimizer"
            ]:
                self.raiseOptimizeError("mixed_precision",
                                        self._optimizer.__class__.__name__)
            self._optimizer = fluid.contrib.mixed_precision.decorate(
                self._optimizer,
                init_loss_scaling=self._amp_loss_scaling,
                use_dynamic_loss_scaling=True)

634 635 636 637
        main_program = loss.block.program
        if startup_program is None:
            startup_program = fluid.default_startup_program()
        fleet.startup_program = startup_program
638

639
        self._loss = loss
640

641 642
        self._check_collective_mode(main_program, self._optimizer,
                                    self._strategy)
643

644
        optimize_ops, param_grads = self._optimizer.minimize(
G
gongweibao 已提交
645 646 647 648
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
649

650 651
        fleet._origin_program = main_program.clone(for_test=False)
        fleet._transpiled_program = main_program
652
        fleet.main_program = self._try_to_compile(startup_program, main_program)
653 654

        return optimize_ops, param_grads