Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
24a063f6
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
24a063f6
编写于
4月 03, 2020
作者:
G
gongweibao
提交者:
GitHub
4月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add fleet checkpoint on local fs and remote fs(such as hdfs) for EDL (#22586)
上级
0c23e3ff
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
1130 addition
and
214 deletion
+1130
-214
paddle/fluid/framework/io/CMakeLists.txt
paddle/fluid/framework/io/CMakeLists.txt
+1
-1
paddle/fluid/framework/io/shell.cc
paddle/fluid/framework/io/shell.cc
+33
-6
paddle/fluid/framework/io/shell.h
paddle/fluid/framework/io/shell.h
+6
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+4
-2
python/paddle/distributed/cloud_utils.py
python/paddle/distributed/cloud_utils.py
+79
-0
python/paddle/distributed/fs_wrapper.py
python/paddle/distributed/fs_wrapper.py
+223
-0
python/paddle/distributed/launch.py
python/paddle/distributed/launch.py
+74
-200
python/paddle/distributed/utils.py
python/paddle/distributed/utils.py
+424
-0
python/paddle/fluid/incubate/fleet/collective/__init__.py
python/paddle/fluid/incubate/fleet/collective/__init__.py
+202
-2
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/test_fleet_checkpoint.py
python/paddle/fluid/tests/unittests/test_fleet_checkpoint.py
+77
-0
python/paddle/fluid/tests/unittests/test_launch.sh
python/paddle/fluid/tests/unittests/test_launch.sh
+4
-2
python/requirements.txt
python/requirements.txt
+1
-0
未找到文件。
paddle/fluid/framework/io/CMakeLists.txt
浏览文件 @
24a063f6
cc_library
(
fs SRCS fs.cc DEPS string_helper glog boost
)
cc_library
(
shell SRCS shell.cc DEPS string_helper glog
)
cc_library
(
shell SRCS shell.cc DEPS string_helper glog
timer
)
cc_test
(
test_fs SRCS test_fs.cc DEPS fs shell
)
paddle/fluid/framework/io/shell.cc
浏览文件 @
24a063f6
...
...
@@ -13,6 +13,8 @@
// limitations under the License.
#include "paddle/fluid/framework/io/shell.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/timer.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -296,23 +298,48 @@ std::pair<std::shared_ptr<FILE>, std::shared_ptr<FILE>> shell_p2open(
#endif
}
std
::
string
shell_get_command_output
(
const
std
::
string
&
cmd
)
{
std
::
string
shell_get_command_output
(
const
std
::
string
&
cmd
,
int
time_out
,
int
sleep_inter
,
bool
print_cmd
)
{
#if defined _WIN32 || defined __APPLE__
return
""
;
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"This function(shell_get_command_output) is not implemented under _WIN32 "
"or __APPLE__."
));
#else
int
err_no
=
0
;
platform
::
Timer
timer
;
do
{
if
(
print_cmd
)
{
LOG
(
INFO
)
<<
"exec cmd:["
<<
cmd
<<
"]"
;
}
err_no
=
0
;
std
::
shared_ptr
<
FILE
>
pipe
=
shell_popen
(
cmd
,
"r"
,
&
err_no
);
string
::
LineFileReader
reader
;
if
(
reader
.
getdelim
(
&*
pipe
,
0
))
{
pipe
=
nullptr
;
if
(
err_no
==
0
)
{
char
*
buf
=
reader
.
getdelim
(
&*
pipe
,
0
);
if
(
err_no
==
0
)
{
if
(
buf
)
{
return
reader
.
get
();
}
return
""
;
}
if
(
sleep_inter
>
0
)
{
usleep
(
sleep_inter
);
}
}
while
(
err_no
==
-
1
);
timer
.
Pause
();
if
(
time_out
>
0
&&
timer
.
ElapsedMS
()
>=
time_out
)
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
ExecutionTimeout
(
"shell_get_command_output execute error errno:%d and try until "
"timeout."
,
errno
));
return
""
;
}
timer
.
Resume
();
pipe
=
nullptr
;
}
while
(
err_no
);
return
""
;
#endif
}
...
...
paddle/fluid/framework/io/shell.h
浏览文件 @
24a063f6
...
...
@@ -65,7 +65,12 @@ inline void shell_execute(const std::string& cmd) {
}
while
(
err_no
==
-
1
);
}
extern
std
::
string
shell_get_command_output
(
const
std
::
string
&
cmd
);
// timeout:ms, default -1 means forever.
// sleep_inter:ms, default -1 means not sleep.
extern
std
::
string
shell_get_command_output
(
const
std
::
string
&
cmd
,
int
time_out
=
-
1
,
int
sleep_inter
=
-
1
,
bool
print_cmd
=
false
);
}
// namespace framework
}
// namespace paddle
paddle/fluid/pybind/pybind.cc
浏览文件 @
24a063f6
...
...
@@ -1494,8 +1494,10 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"is_compiled_with_mkldnn"
,
IsCompiledWithMKLDNN
);
m
.
def
(
"is_compiled_with_brpc"
,
IsCompiledWithBrpc
);
m
.
def
(
"is_compiled_with_dist"
,
IsCompiledWithDIST
);
m
.
def
(
"run_cmd"
,
[](
const
std
::
string
&
cmd
)
->
const
std
::
string
{
return
paddle
::
framework
::
shell_get_command_output
(
cmd
);
m
.
def
(
"run_cmd"
,
[](
const
std
::
string
&
cmd
,
int
time_out
=
-
1
,
int
sleep_inter
=
-
1
)
->
const
std
::
string
{
return
paddle
::
framework
::
shell_get_command_output
(
cmd
,
time_out
,
sleep_inter
);
});
#ifdef PADDLE_WITH_CUDA
m
.
def
(
"is_float16_supported"
,
[](
const
platform
::
CUDAPlace
&
place
)
->
bool
{
...
...
python/paddle/distributed/cloud_utils.py
0 → 100644
浏览文件 @
24a063f6
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
utils
import
get_cluster
,
logger
import
os
def
get_cloud_cluster
(
args_node_ips
,
args_node_ip
,
args_port
,
selected_gpus
):
"""
args_node_ips, args_node_ip:string
"""
#you can automatically get ip info while using paddlecloud multi nodes mode.
node_ips
=
os
.
getenv
(
"PADDLE_TRAINERS"
)
assert
node_ips
is
not
None
,
"PADDLE_TRAINERS should not be None"
node_ip
=
os
.
getenv
(
"POD_IP"
)
assert
node_ip
is
not
None
,
"POD_IP should not be None"
node_rank
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
)
assert
node_rank
is
not
None
,
"PADDLE_TRAINER_ID should not be None"
node_ips
=
node_ips
.
split
(
","
)
num_nodes
=
len
(
node_ips
)
node_rank
=
int
(
node_rank
)
if
node_ip
!=
"127.0.0.1"
and
node_ip
!=
args_node_ip
:
logger
.
warning
(
"Please NOTE: When using paddlecloud, node_ip is
\
automatically got from POD_IP. Your input node_ip: {} doesn't equals to
\
node_ip: {} from paddlecloud environment."
.
format
(
args_node_ip
,
node_ip
))
if
args_node_ips
!=
"127.0.0.1"
and
args_node_ips
!=
","
.
join
(
node_ips
):
logger
.
warning
(
"Please NOTE: When using paddlecloud, cluster_node_ips is
\
automatically got from PADDLE_TRAINERS(multi nodes) or POD_IP(single node).
\
Your input cluster_node_ips: {} doesn't equals to IPs: {} from
\
paddlecloud environment."
.
format
(
args_node_ips
,
node_ips
))
started_port
=
args_port
print
(
"num_nodes:"
,
num_nodes
)
if
num_nodes
>
1
:
try
:
paddle_port
=
int
(
os
.
getenv
(
"PADDLE_PORT"
,
""
))
paddle_port_num
=
int
(
os
.
getenv
(
"TRAINER_PORTS_NUM"
,
""
))
if
paddle_port_num
>=
len
(
selected_gpus
)
and
paddle_port
!=
args_port
:
logger
.
warning
(
"Use Cloud specified port:{}."
.
format
(
paddle_port
))
started_port
=
paddle_port
except
Exception
as
e
:
print
(
e
)
pass
if
started_port
is
None
:
started_port
=
6170
logger
.
debug
(
"parsed from args:node_ips:{}
\
node_ip:{} node_rank:{} started_port:{}"
.
format
(
node_ips
,
node_ip
,
node_rank
,
started_port
))
ports
=
[
x
for
x
in
range
(
started_port
,
started_port
+
len
(
selected_gpus
))]
cluster
,
pod
=
get_cluster
(
node_ips
,
node_ip
,
ports
,
selected_gpus
)
return
cluster
,
cluster
.
pods
[
node_rank
]
def
get_trainers_num
():
return
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"1"
))
python/paddle/distributed/fs_wrapper.py
0 → 100644
浏览文件 @
24a063f6
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
sys
import
abc
import
os
from
pathlib
import
PurePosixPath
import
shutil
class
FS
(
object
):
@
abc
.
abstractmethod
def
list_dirs
(
self
,
fs_path
):
pass
@
abc
.
abstractmethod
def
ls_dir
(
self
,
fs_path
):
pass
@
abc
.
abstractmethod
def
stat
(
self
,
fs_path
):
pass
@
abc
.
abstractmethod
def
upload
(
self
,
local_path
,
fs_path
):
pass
@
abc
.
abstractmethod
def
download
(
self
,
fs_path
,
local_path
):
pass
@
abc
.
abstractmethod
def
mkdir
(
self
,
fs_path
):
pass
@
abc
.
abstractmethod
def
mv
(
self
,
fs_src_path
,
fs_dst_path
):
pass
@
abc
.
abstractmethod
def
rmr
(
self
,
fs_path
):
pass
@
abc
.
abstractmethod
def
rm
(
self
,
fs_path
):
pass
@
abc
.
abstractmethod
def
delete
(
self
,
fs_path
):
pass
@
abc
.
abstractmethod
def
need_upload_download
(
self
):
pass
class
LocalFS
(
FS
):
def
list_dirs
(
self
,
fs_path
):
if
not
self
.
stat
(
fs_path
):
return
[]
return
[
f
for
f
in
os
.
listdir
(
fs_path
)
if
os
.
path
.
isdir
(
fs_path
+
"/"
+
f
)
]
def
ls_dir
(
self
,
fs_path
):
return
[
f
for
f
in
os
.
listdir
(
fs_path
)]
def
stat
(
self
,
fs_path
):
return
os
.
path
.
exists
(
fs_path
)
def
mkdir
(
self
,
fs_path
):
assert
not
os
.
path
.
isfile
(
fs_path
),
"{} is already a file"
.
format
(
fs_path
)
os
.
system
(
"mkdir -p {}"
.
format
(
fs_path
))
def
mv
(
self
,
fs_src_path
,
fs_dst_path
):
os
.
rename
(
fs_src_path
,
fs_dst_path
)
def
rmr
(
self
,
fs_path
):
shutil
.
rmtree
(
fs_path
)
def
rm
(
self
,
fs_path
):
os
.
remove
(
fs_path
)
def
delete
(
self
,
fs_path
):
if
not
self
.
stat
(
fs_path
):
return
if
os
.
path
.
isfile
(
fs_path
):
return
self
.
rm
(
fs_path
)
return
self
.
rmr
(
fs_path
)
def
need_upload_download
(
self
):
return
False
class
BDFS
(
FS
):
def
__init__
(
self
,
hdfs_name
,
hdfs_ugi
,
time_out
=
20
*
60
*
1000
,
sleep_inter
=
1000
):
self
.
_base_cmd
=
"hadoop fs -Dfs.default.name=
\"
{}
\"
-Dhadoop.job.ugi=
\"
{}
\"
"
.
format
(
hdfs_name
,
hdfs_ugi
)
self
.
_time_out
=
time_out
self
.
_sleep_inter
=
sleep_inter
def
_run_cmd
(
self
,
cmd
):
ret
=
fluid
.
core
.
run_cmd
(
cmd
,
self
.
_time_out
,
self
.
_sleep_inter
)
if
len
(
ret
)
<=
0
:
return
[]
lines
=
ret
.
splitlines
()
return
lines
def
list_dirs
(
self
,
fs_path
):
if
not
self
.
stat
(
fs_path
):
return
[]
dirs
,
_
=
self
.
ls_dir
(
fs_path
)
return
dirs
def
ls_dir
(
self
,
fs_path
):
"""
list directory under fs_path, and only give the pure name, not include the fs_path
"""
cmd
=
"{} -ls {}"
.
format
(
self
.
_base_cmd
,
fs_path
)
lines
=
self
.
_run_cmd
(
cmd
)
dirs
=
[]
files
=
[]
for
line
in
lines
:
arr
=
line
.
split
()
if
len
(
arr
)
!=
8
:
continue
if
fs_path
not
in
arr
[
7
]:
continue
p
=
PurePosixPath
(
arr
[
7
])
if
arr
[
0
][
0
]
==
'd'
:
dirs
.
append
(
p
.
name
)
else
:
files
.
append
(
p
.
name
)
return
dirs
,
files
def
is_dir
(
self
,
fs_path
):
cmd
=
"{} -test -d {} ; echo $?"
.
format
(
self
.
_base_cmd
,
fs_path
)
test
=
self
.
_run_cmd
(
cmd
)
if
test
[
0
].
strip
()
==
"0"
:
return
True
return
False
def
stat
(
self
,
fs_path
):
cmd
=
"{} -test -e {} ; echo $?"
.
format
(
self
.
_base_cmd
,
fs_path
)
test
=
self
.
_run_cmd
(
cmd
)
if
test
[
0
].
strip
()
==
"0"
:
return
True
return
False
def
upload
(
self
,
local_path
,
fs_path
):
cmd
=
"{} -put {} {}"
.
format
(
self
.
_base_cmd
,
local_path
,
fs_path
)
fluid
.
core
.
run_cmd
(
cmd
,
self
.
_time_out
,
self
.
_sleep_inter
)
def
download
(
self
,
fs_path
,
local_path
):
cmd
=
"{} -get {} {}/"
.
format
(
self
.
_base_cmd
,
fs_path
,
local_path
)
fluid
.
core
.
run_cmd
(
cmd
,
self
.
_time_out
,
self
.
_sleep_inter
)
def
mkdir
(
self
,
fs_path
):
if
not
self
.
stat
(
fs_path
):
cmd
=
"{} -mkdir {}"
.
format
(
self
.
_base_cmd
,
fs_path
)
fluid
.
core
.
run_cmd
(
cmd
,
self
.
_time_out
,
self
.
_sleep_inter
)
def
mv
(
self
,
fs_src_path
,
fs_dst_path
):
cmd
=
"{} -mv {} {}"
.
format
(
self
.
_base_cmd
,
fs_src_path
,
fs_dst_path
)
fluid
.
core
.
run_cmd
(
cmd
,
self
.
_time_out
,
self
.
_sleep_inter
)
def
rmr
(
self
,
fs_path
):
if
not
self
.
stat
(
fs_path
):
return
cmd
=
"{} -rmr {}"
.
format
(
self
.
_base_cmd
,
fs_path
)
return
fluid
.
core
.
run_cmd
(
cmd
,
self
.
_time_out
,
self
.
_sleep_inter
)
def
rm
(
self
,
fs_path
):
if
not
self
.
stat
(
fs_path
):
return
cmd
=
"{} -rm {}"
.
format
(
self
.
_base_cmd
,
fs_path
)
return
fluid
.
core
.
run_cmd
(
cmd
,
self
.
_time_out
,
self
.
_sleep_inter
)
def
delete
(
self
,
fs_path
):
if
not
self
.
stat
(
fs_path
):
return
is_dir
=
self
.
is_dir
(
fs_path
)
if
is_dir
:
return
self
.
rmr
(
fs_path
)
return
self
.
rm
(
fs_path
)
def
need_upload_download
(
self
):
return
True
python/paddle/distributed/launch.py
浏览文件 @
24a063f6
...
...
@@ -36,7 +36,6 @@ launch a process on each of the given gpu card.
"""
from
__future__
import
print_function
import
logging
import
sys
from
sys
import
version
import
subprocess
...
...
@@ -45,17 +44,11 @@ import time
import
six
import
copy
from
argparse
import
ArgumentParser
,
REMAINDER
import
paddle
import
paddle.fluid
as
fluid
from
contextlib
import
closing
import
socket
logger
=
logging
.
getLogger
()
logger
.
setLevel
(
logging
.
INFO
)
log_handler
=
logging
.
StreamHandler
()
log_format
=
logging
.
Formatter
(
'%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
)
log_handler
.
setFormatter
(
log_format
)
logger
.
addHandler
(
log_handler
)
from
paddle.distributed.utils
import
*
import
paddle.distributed.cloud_utils
as
cloud_utils
def
_print_arguments
(
args
):
...
...
@@ -65,32 +58,6 @@ def _print_arguments(args):
print
(
"------------------------------------------------"
)
def
find_free_ports
(
num
):
def
__free_port
():
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
s
:
s
.
bind
((
''
,
0
))
return
s
.
getsockname
()[
1
]
port_set
=
set
()
step
=
0
while
True
:
port
=
__free_port
()
if
port
not
in
port_set
:
port_set
.
add
(
port
)
if
len
(
port_set
)
>=
num
:
return
port_set
step
+=
1
if
step
>
100
:
print
(
"can't find avilable port and use the specified static port now!"
)
return
None
return
None
def
_parse_args
():
"""
Helper function parsing the command line options
...
...
@@ -146,6 +113,12 @@ POD_IP (current node ip address, not needed for local training)
"each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
)
parser
.
add_argument
(
"--log_level"
,
type
=
int
,
default
=
20
,
# logging.INFO, details are here:https://docs.python.org/3/library/logging.html#levels
help
=
"Logging level, default is logging.INFO"
)
parser
.
add_argument
(
"--log_dir"
,
type
=
str
,
...
...
@@ -166,196 +139,97 @@ POD_IP (current node ip address, not needed for local training)
return
parser
.
parse_args
()
def
terminate_procs
(
procs
):
for
p
in
procs
:
if
p
.
poll
()
is
None
:
p
.
terminate
()
def
get_cluster_from_args
(
args
,
selected_gpus
):
node_ips
=
[
x
.
strip
()
for
x
in
args
.
cluster_node_ips
.
split
(
','
)]
node_ip
=
args
.
node_ip
node_rank
=
node_ips
.
index
(
node_ip
)
logger
.
debug
(
"parsed from args:node_ips:{} node_ip:{} node_rank:{}"
.
format
(
node_ips
,
node_ip
,
node_rank
))
free_ports
=
None
if
not
args
.
use_paddlecloud
and
len
(
node_ips
)
<=
1
and
args
.
started_port
is
None
:
free_ports
=
find_free_ports
(
len
(
selected_gpus
))
if
free_ports
is
not
None
:
free_ports
=
list
(
free_ports
)
else
:
free_ports
=
[
x
for
x
in
range
(
args
.
started_port
,
args
.
started_port
+
len
(
selected_gpus
))
]
def
start_procs
(
args
):
"""
"""
default_env
=
os
.
environ
.
copy
()
return
get_cluster
(
node_ips
,
node_ip
,
free_ports
,
selected_gpus
)
current_node_ip
=
args
.
node_ip
node_ips
=
[
x
.
strip
()
for
x
in
args
.
cluster_node_ips
.
split
(
','
)]
node_id
=
node_ips
.
index
(
current_node_ip
)
if
args
.
use_paddlecloud
:
trainer_nums
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"1"
))
if
trainer_nums
!=
1
:
#you can automatically get ip info while using paddlecloud multi nodes mode.
current_node_ip
=
os
.
getenv
(
"POD_IP"
)
assert
current_node_ip
is
not
None
,
"POD_IP should not be None"
node_ips
=
os
.
getenv
(
"PADDLE_TRAINERS"
)
assert
node_ips
is
not
None
,
"PADDLE_TRAINERS should not be None"
node_ips
=
node_ips
.
split
(
","
)
node_id
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
)
assert
node_id
is
not
None
,
"PADDLE_TRAINER_ID should not be None"
node_id
=
int
(
node_id
)
if
args
.
node_ip
!=
"127.0.0.1"
and
current_node_ip
!=
args
.
node_ip
:
logger
.
warning
(
"Please NOTE: When using paddlecloud, current_node_ip is
\
automatically got from POD_IP. Your input node_ip: {} doesn't equals to
\
current_node_ip: {} from paddlecloud environment."
.
format
(
args
.
node_ip
,
current_node_ip
))
if
args
.
cluster_node_ips
!=
"127.0.0.1"
and
args
.
cluster_node_ips
!=
","
.
join
(
node_ips
):
logger
.
warning
(
"Please NOTE: When using paddlecloud, cluster_node_ips is
\
automatically got from PADDLE_TRAINERS(multi nodes) or POD_IP(single node).
\
Your input cluster_node_ips: {} doesn't equals to IPs: {} from
\
paddlecloud environment."
.
format
(
args
.
cluster_node_ips
,
node_ips
))
num_nodes
=
len
(
node_ips
)
if
args
.
selected_gpus
is
None
:
def
get_gpus
(
selected_gpus
):
if
selected_gpus
is
None
:
gpus_num
=
fluid
.
core
.
get_cuda_device_count
()
selected_gpus
=
[
str
(
x
)
for
x
in
range
(
0
,
gpus_num
)]
else
:
cuda_visible_devices
=
os
.
getenv
(
"CUDA_VISIBLE_DEVICES"
)
if
cuda_visible_devices
is
None
or
cuda_visible_devices
==
""
:
selected_gpus
=
[
x
.
strip
()
for
x
in
args
.
selected_gpus
.
split
(
','
)]
selected_gpus
=
[
x
.
strip
()
for
x
in
selected_gpus
.
split
(
','
)]
else
:
# change selected_gpus into relative values
# e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
# therefore selected_gpus=0,1,2,3
cuda_visible_devices_list
=
cuda_visible_devices
.
split
(
','
)
for
x
in
args
.
selected_gpus
.
split
(
','
):
for
x
in
selected_gpus
.
split
(
','
):
assert
x
in
cuda_visible_devices_list
,
"Can't find "
\
"your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."
\
%
(
x
,
cuda_visible_devices
)
selected_gpus
=
[
cuda_visible_devices_list
.
index
(
x
.
strip
())
for
x
in
args
.
selected_gpus
.
split
(
','
)
for
x
in
selected_gpus
.
split
(
','
)
]
selected_gpus_num
=
len
(
selected_gpus
)
if
args
.
use_paddlecloud
and
num_nodes
>
1
:
cloud_paddle_port
=
os
.
getenv
(
"PADDLE_PORT"
,
""
)
cloud_paddle_port_num
=
os
.
getenv
(
"PADDLE_PORTS_NUM"
,
""
)
if
cloud_paddle_port
!=
""
and
cloud_paddle_port_num
!=
""
:
cloud_paddle_port_num
=
int
(
cloud_paddle_port_num
)
if
cloud_paddle_port_num
>=
selected_gpus_num
:
args
.
started_port
=
int
(
cloud_paddle_port
)
logger
.
warning
(
"Use Cloud specified port:{}."
.
format
(
cloud_paddle_port
))
free_ports
=
None
if
not
args
.
use_paddlecloud
and
num_nodes
<=
1
and
args
.
started_port
is
None
:
free_ports
=
find_free_ports
(
selected_gpus_num
)
if
free_ports
is
not
None
:
free_ports
=
list
(
free_ports
)
args
.
started_port
=
free_ports
[
0
]
return
selected_gpus
if
args
.
started_port
is
None
:
args
.
started_port
=
6170
if
free_ports
is
None
:
free_ports
=
[
x
for
x
in
range
(
args
.
started_port
,
args
.
started_port
+
selected_gpus_num
)
]
def
launch
(
args
)
:
# parse arguments, used for cloud-single-machine and local
selected_gpus
=
get_gpus
(
args
.
selected_gpus
)
trainers_num
=
cloud_utils
.
get_trainers_num
()
logger
.
debug
(
"parsed from args trainerss_num:{} selected_gpus:{}"
.
format
(
trainers_num
,
selected_gpus
))
trainers_endpoints
=
""
for
ip
in
node_ips
:
for
i
in
range
(
0
,
selected_gpus_num
):
if
trainers_endpoints
!=
""
:
trainers_endpoints
+=
","
trainers_endpoints
+=
"%s:%d"
%
(
ip
,
free_ports
[
i
])
cluster
=
None
pod
=
None
nranks
=
num_nodes
*
selected_gpus_num
if
args
.
use_paddlecloud
and
trainers_num
!=
1
:
cluster
,
pod
=
cloud_utils
.
get_cloud_cluster
(
args
.
cluster_node_ips
,
args
.
node_ip
,
args
.
started_port
,
selected_gpus
)
logger
.
info
(
"get cluster from cloud:{}"
.
format
(
cluster
))
else
:
cluster
,
pod
=
get_cluster_from_args
(
args
,
selected_gpus
)
logger
.
info
(
"get cluster from args:{}"
.
format
(
cluster
))
if
args
.
print_config
:
print
(
"trainers_endpoints:"
,
trainers_endpoints
,
", node_id:"
,
node_id
,
", current_node_ip:"
,
current_node_ip
,
", num_nodes:"
,
num_nodes
,
", node_ips:"
,
node_ips
,
", nranks:"
,
nranks
)
current_env
=
copy
.
copy
(
default_env
)
#paddle broadcast ncclUniqueId use socket, and
#proxy maybe make trainers unreachable, so delete them.
#if we set them to "", grpc will log error message "bad uri"
#so just delete them.
current_env
.
pop
(
"http_proxy"
,
None
)
current_env
.
pop
(
"https_proxy"
,
None
)
procs
=
[]
log_fns
=
[]
cmds
=
[]
ranks
=
[]
for
i
in
range
(
0
,
selected_gpus_num
):
rank
=
(
node_id
*
selected_gpus_num
+
i
)
current_env
.
update
({
"FLAGS_selected_gpus"
:
"%s"
%
selected_gpus
[
i
],
"PADDLE_TRAINER_ID"
:
"%d"
%
rank
,
"PADDLE_CURRENT_ENDPOINT"
:
"%s:%d"
%
(
current_node_ip
,
free_ports
[
i
]),
"PADDLE_TRAINERS_NUM"
:
"%d"
%
nranks
,
"PADDLE_TRAINER_ENDPOINTS"
:
trainers_endpoints
})
cmd
=
[
sys
.
executable
,
"-u"
,
args
.
training_script
]
+
args
.
training_script_args
cmds
.
append
(
cmd
)
if
args
.
log_dir
is
not
None
:
os
.
system
(
"mkdir -p {}"
.
format
(
args
.
log_dir
))
fn
=
open
(
"%s/workerlog.%d"
%
(
args
.
log_dir
,
i
),
"w"
)
log_fns
.
append
(
fn
)
proc
=
subprocess
.
Popen
(
cmd
,
env
=
current_env
,
stdout
=
fn
,
stderr
=
fn
)
else
:
proc
=
subprocess
.
Popen
(
cmd
,
env
=
current_env
)
procs
.
append
(
proc
)
ranks
.
append
(
rank
)
try
:
alive
=
True
error
=
False
error_rank
=
[]
# wait all process finish or one error
while
alive
and
not
error
:
alive
=
False
for
rank
,
p
in
zip
(
ranks
,
procs
):
ret
=
p
.
poll
()
if
ret
is
None
:
alive
=
True
elif
ret
!=
0
:
error
=
True
error_rank
.
append
(
rank
)
time
.
sleep
(
1
)
if
error
:
terminate_procs
(
procs
)
exit
(
1
)
except
KeyboardInterrupt
:
logger
.
warning
(
"KeyboardInterrupt, exit"
)
terminate_procs
(
procs
)
raise
except
SystemExit
:
logger
.
error
(
"ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log."
.
format
(
nranks
,
error_rank
))
terminate_procs
(
procs
)
raise
except
:
logger
.
error
(
"ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log."
.
format
(
nranks
,
error_rank
))
terminate_procs
(
procs
)
raise
finally
:
for
fn
in
log_fns
:
fn
.
close
()
def
launch
():
procs
=
start_local_trainers
(
cluster
,
pod
,
training_script
=
args
.
training_script
,
training_script_args
=
args
.
training_script_args
,
log_dir
=
args
.
log_dir
)
while
True
:
alive
=
watch_local_trainers
(
procs
,
cluster
.
trainers_nranks
())
if
not
alive
:
logger
.
info
(
"Local procs complete, POD info:{}"
.
format
(
pod
))
break
time
.
sleep
(
3
)
if
__name__
==
"__main__"
:
args
=
_parse_args
()
logger
=
get_logger
(
args
.
log_level
)
if
args
.
print_config
:
_print_arguments
(
args
)
start_procs
(
args
)
if
__name__
==
"__main__"
:
launch
()
launch
(
args
)
python/paddle/distributed/utils.py
0 → 100644
浏览文件 @
24a063f6
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
functools
import
logging
import
socket
import
time
import
os
import
signal
import
copy
import
sys
import
subprocess
from
contextlib
import
closing
import
socket
logger
=
logging
.
getLogger
(
"root"
)
logger
.
propagate
=
False
class
Hdfs
(
object
):
def
__init__
(
self
):
self
.
hdfs_ugi
=
None
self
.
hdfs_name
=
None
self
.
hdfs_path
=
None
def
is_valid
(
self
):
return
self
.
hdfs_ugi
is
not
None
and
\
self
.
hdfs_name
is
not
None
and
\
self
.
hdfs_path
is
not
None
def
__str__
(
self
):
return
"hdfs_ugi:{} hdfs_name:{} hdfs_path{}"
.
format
(
self
.
hdfs_ugi
,
self
.
hdfs_name
,
self
.
hdfs_path
)
def
__eq__
(
self
,
n
):
return
self
.
hdfs_ugi
==
n
.
hdfs_ugi
and
\
self
.
hdfs_name
==
n
.
hdfs_name
and
\
self
.
hdfs_path
==
n
.
hdfs_path
def
__ne__
(
self
,
n
):
return
not
self
==
n
class
Cluster
(
object
):
def
__init__
(
self
,
hdfs
):
self
.
job_server
=
None
self
.
pods
=
[]
self
.
hdfs
=
None
self
.
job_stage_flag
=
None
def
__str__
(
self
):
return
"job_server:{} pods:{} job_stage_flag:{} hdfs:{}"
.
format
(
self
.
job_server
,
[
str
(
pod
)
for
pod
in
self
.
pods
],
self
.
job_stage_flag
,
self
.
hdfs
)
def
__eq__
(
self
,
cluster
):
if
len
(
self
.
pods
)
!=
len
(
cluster
.
pods
):
return
False
for
a
,
b
in
zip
(
self
.
pods
,
cluster
.
pods
):
if
a
!=
b
:
return
False
if
self
.
job_stage_flag
!=
cluster
.
job_stage_flag
:
return
False
return
True
def
__ne__
(
self
,
cluster
):
return
not
self
.
__eq__
(
cluster
)
def
update_pods
(
cluster
):
self
.
pods
=
copy
.
copy
(
cluster
.
pods
)
def
trainers_nranks
(
self
):
return
len
(
self
.
trainers_endpoints
())
def
pods_nranks
(
self
):
return
len
(
self
.
pods
)
def
trainers_endpoints
(
self
):
r
=
[]
for
pod
in
self
.
pods
:
for
t
in
pod
.
trainers
:
r
.
append
(
t
.
endpoint
)
return
r
def
pods_endpoints
(
self
):
r
=
[]
for
pod
in
self
.
pods
:
ep
=
"{}:{}"
.
format
(
pod
.
addr
,
pod
.
port
)
assert
pod
.
port
!=
None
and
pod
.
addr
!=
None
,
"{} not a valid endpoint"
.
format
(
ep
)
r
.
append
(
ep
)
return
r
def
get_pod_by_id
(
self
,
pod_id
):
for
pod
in
self
.
pods
:
if
str
(
pod_id
)
==
str
(
pod
.
id
):
return
pod
return
None
class
JobServer
(
object
):
def
__init__
(
self
):
self
.
endpoint
=
None
def
__str__
(
self
):
return
"{}"
.
format
(
self
.
endpoint
)
def
__eq__
(
self
,
j
):
return
self
.
endpint
==
j
.
endpoint
def
__ne__
(
self
,
j
):
return
not
self
==
j
class
Trainer
(
object
):
def
__init__
(
self
):
self
.
gpus
=
[]
self
.
endpoint
=
None
self
.
rank
=
None
def
__str__
(
self
):
return
"gpu:{} endpoint:{} rank:{}"
.
format
(
self
.
gpus
,
self
.
endpoint
,
self
.
rank
)
def
__eq__
(
self
,
t
):
if
len
(
self
.
gpus
)
!=
len
(
t
.
gpus
):
return
False
if
self
.
endpoint
!=
t
.
endpoint
or
\
self
.
rank
!=
t
.
rank
:
return
False
for
a
,
b
in
zip
(
self
.
gpus
,
t
.
gpus
):
if
a
!=
b
:
return
False
return
True
def
__ne__
(
self
,
t
):
return
not
self
==
t
def
rank
(
self
):
return
self
.
rank
class
Pod
(
object
):
def
__init__
(
self
):
self
.
rank
=
None
self
.
id
=
None
self
.
addr
=
None
self
.
port
=
None
self
.
trainers
=
[]
self
.
gpus
=
[]
def
__str__
(
self
):
return
"rank:{} id:{} addr:{} port:{} visible_gpu:{} trainers:{}"
.
format
(
self
.
rank
,
self
.
id
,
self
.
addr
,
self
.
port
,
self
.
gpus
,
[
str
(
t
)
for
t
in
self
.
trainers
])
def
__eq__
(
self
,
pod
):
if
self
.
rank
!=
pod
.
rank
or
\
self
.
id
!=
pod
.
id
or
\
self
.
addr
!=
pod
.
addr
or
\
self
.
port
!=
pod
.
port
:
logger
.
debug
(
"pod {} != pod"
.
format
(
self
,
pod
))
return
False
if
len
(
self
.
trainers
)
!=
len
(
pod
.
trainers
):
logger
.
debug
(
"trainers {} != {}"
.
format
(
self
.
trainers
,
pod
.
trainers
))
return
False
for
i
in
range
(
len
(
self
.
trainers
)):
if
self
.
trainers
[
i
]
!=
pod
.
trainers
[
i
]:
logger
.
debug
(
"trainer {} != {}"
.
format
(
self
.
trainers
[
i
],
pod
.
trainers
[
i
]))
return
False
return
True
def
__ne__
(
self
,
pod
):
return
not
self
==
pod
def
parse_response
(
self
,
res_pods
):
pass
def
rank
(
self
):
return
self
.
rank
def
get_visible_gpus
(
self
):
r
=
""
for
g
in
self
.
gpus
:
r
+=
"{},"
.
format
(
g
)
assert
r
!=
""
,
"this pod {} can't see any gpus"
.
format
(
self
)
r
=
r
[:
-
1
]
return
r
def
get_logger
(
log_level
,
name
=
"root"
):
logger
=
logging
.
getLogger
(
name
)
logger
.
setLevel
(
log_level
)
log_handler
=
logging
.
StreamHandler
()
log_format
=
logging
.
Formatter
(
'%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
)
log_handler
.
setFormatter
(
log_format
)
logger
.
addHandler
(
log_handler
)
return
logger
def
get_cluster
(
node_ips
,
node_ip
,
paddle_ports
,
selected_gpus
):
assert
type
(
paddle_ports
)
is
list
,
"paddle_ports must be list"
cluster
=
Cluster
(
hdfs
=
None
)
trainer_rank
=
0
for
node_rank
,
ip
in
enumerate
(
node_ips
):
pod
=
Pod
()
pod
.
rank
=
node_rank
pod
.
addr
=
ip
for
i
in
range
(
len
(
selected_gpus
)):
trainer
=
Trainer
()
trainer
.
gpus
.
append
(
selected_gpus
[
i
])
trainer
.
endpoint
=
"%s:%d"
%
(
ip
,
paddle_ports
[
i
])
trainer
.
rank
=
trainer_rank
trainer_rank
+=
1
pod
.
trainers
.
append
(
trainer
)
cluster
.
pods
.
append
(
pod
)
pod_rank
=
node_ips
.
index
(
node_ip
)
return
cluster
,
cluster
.
pods
[
pod_rank
]
def
terminate_local_procs
(
procs
):
for
p
in
procs
:
if
p
.
proc
.
poll
()
is
None
:
p
.
proc
.
terminate
()
p
.
log_fn
.
close
()
logger
.
debug
(
"terminate process id:{}"
.
format
(
p
.
proc
.
pid
))
# wait all process terminiated
# time.sleep(3)
for
step
in
range
(
0
,
50
):
alive
=
False
for
p
in
procs
:
if
p
.
proc
.
poll
()
is
None
:
# not termniate
os
.
kill
(
p
.
proc
.
pid
,
signal
.
SIGKILL
)
alive
=
True
if
not
alive
:
logger
.
info
(
"terminate all the procs"
)
return
time
.
sleep
(
3
)
logger
.
fatal
(
"can't kill all process and exit"
)
exit
(
1
)
def
get_host_name_ip
():
try
:
host_name
=
socket
.
gethostname
()
host_ip
=
socket
.
gethostbyname
(
host_name
)
return
host_name
,
host_ip
except
:
return
None
def
add_arguments
(
argname
,
type
,
default
,
help
,
argparser
,
**
kwargs
):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type
=
distutils
.
util
.
strtobool
if
type
==
bool
else
type
argparser
.
add_argument
(
"--"
+
argname
,
default
=
default
,
type
=
type
,
help
=
help
+
' Default: %(default)s.'
,
**
kwargs
)
def
find_free_ports
(
num
):
def
__free_port
():
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
s
:
s
.
bind
((
''
,
0
))
return
s
.
getsockname
()[
1
]
port_set
=
set
()
step
=
0
while
True
:
port
=
__free_port
()
if
port
not
in
port_set
:
port_set
.
add
(
port
)
if
len
(
port_set
)
>=
num
:
return
port_set
step
+=
1
if
step
>
100
:
print
(
"can't find avilable port and use the specified static port now!"
)
return
None
return
None
class
TrainerProc
(
object
):
def
__init__
(
self
):
self
.
proc
=
None
self
.
log_fn
=
None
self
.
rank
=
None
self
.
cmd
=
None
def
start_local_trainers
(
cluster
,
pod
,
training_script
,
training_script_args
,
log_dir
=
None
):
current_env
=
copy
.
copy
(
os
.
environ
.
copy
())
#paddle broadcast ncclUniqueId use socket, and
#proxy maybe make trainers unreachable, so delete them.
#if we set them to "", grpc will log error message "bad uri"
#so just delete them.
current_env
.
pop
(
"http_proxy"
,
None
)
current_env
.
pop
(
"https_proxy"
,
None
)
procs
=
[]
for
idx
,
t
in
enumerate
(
pod
.
trainers
):
proc_env
=
{
"FLAGS_selected_gpus"
:
"%s"
%
","
.
join
([
str
(
g
)
for
g
in
t
.
gpus
]),
"PADDLE_TRAINER_ID"
:
"%d"
%
t
.
rank
,
"PADDLE_CURRENT_ENDPOINT"
:
"%s"
%
t
.
endpoint
,
"PADDLE_TRAINERS_NUM"
:
"%d"
%
cluster
.
trainers_nranks
(),
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
())
}
current_env
.
update
(
proc_env
)
logger
.
debug
(
"trainer proc env:{}"
.
format
(
current_env
))
cmd
=
[
sys
.
executable
,
"-u"
,
training_script
]
+
training_script_args
logger
.
info
(
"start trainer proc:{} env:{}"
.
format
(
cmd
,
proc_env
))
fn
=
None
if
log_dir
is
not
None
:
os
.
system
(
"mkdir -p {}"
.
format
(
log_dir
))
fn
=
open
(
"%s/workerlog.%d"
%
(
log_dir
,
idx
),
"a"
)
proc
=
subprocess
.
Popen
(
cmd
,
env
=
current_env
,
stdout
=
fn
,
stderr
=
fn
)
else
:
proc
=
subprocess
.
Popen
(
cmd
,
env
=
current_env
)
tp
=
TrainerProc
()
tp
.
proc
=
proc
tp
.
rank
=
t
.
rank
tp
.
log_fn
=
fn
tp
.
cmd
=
cmd
procs
.
append
(
tp
)
return
procs
def
watch_local_trainers
(
procs
,
nranks
):
try
:
error
=
False
error_rank
=
[]
# wait all process finish or one error
alive
=
False
for
p
in
procs
:
ret
=
p
.
proc
.
poll
()
if
ret
is
None
:
alive
=
True
elif
ret
!=
0
:
error
=
True
error_rank
.
append
(
p
.
rank
)
if
error
:
terminate_local_procs
(
procs
)
exit
(
1
)
except
KeyboardInterrupt
:
logger
.
warning
(
"KeyboardInterrupt, exit"
)
terminate_local_procs
(
procs
)
raise
except
SystemExit
:
logger
.
error
(
"ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log."
.
format
(
nranks
,
error_rank
))
terminate_local_procs
(
procs
)
raise
except
:
logger
.
error
(
"ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log."
.
format
(
nranks
,
error_rank
))
terminate_local_procs
(
procs
)
raise
return
alive
python/paddle/fluid/incubate/fleet/collective/__init__.py
浏览文件 @
24a063f6
...
...
@@ -26,10 +26,14 @@ from paddle.fluid.incubate.fleet.base.fleet_base import Mode
from
paddle.fluid.incubate.fleet.base.fleet_base
import
DistributedOptimizer
from
paddle.fluid
import
compiler
from
paddle.distributed.fs_wrapper
import
LocalFS
,
BDFS
import
os
import
sys
import
six
import
json
import
re
import
shutil
class
LambConfig
(
object
):
...
...
@@ -42,6 +46,21 @@ class DistFCConfig(object):
pass
class
TrainStatus
(
object
):
def
__init__
(
self
,
epoch_no
=-
1
):
# completed epoch
self
.
_epoch_no
=
epoch_no
def
next
(
self
):
return
self
.
_epoch_no
+
1
def
__eq__
(
self
,
t
):
return
self
.
_epoch_no
==
t
.
_epoch_no
def
__ne__
(
self
,
t
):
return
not
self
==
t
class
Collective
(
Fleet
):
def
__init__
(
self
):
super
(
Collective
,
self
).
__init__
(
Mode
.
COLLECTIVE
)
...
...
@@ -51,6 +70,8 @@ class Collective(Fleet):
self
.
_origin_program
=
None
self
.
_transpiled_program
=
None
self
.
main_program
=
None
self
.
_checkoint_prefix
=
"__paddle_fleet_checkpoint__"
self
.
_param_file_name
=
"_paddle_fleet_param__"
def
init_worker
(
self
):
logging
.
warn
(
...
...
@@ -103,7 +124,11 @@ class Collective(Fleet):
executor
,
main_program
,
None
,
None
,
export_for_deployment
)
def
save_persistables
(
self
,
executor
,
dirname
,
main_program
=
None
):
def
save_persistables
(
self
,
executor
,
dirname
,
main_program
=
None
,
filename
=
None
):
"""
This function filters out all variables with `persistable==True` from
the give `main_program` and then saves these variables to the folder
...
...
@@ -125,7 +150,182 @@ class Collective(Fleet):
"In fleet.save_inference_model() function, main_program "
\
"must be as Program type."
io
.
save_persistables
(
executor
,
dirname
,
main_program
,
None
)
io
.
save_persistables
(
executor
,
dirname
,
main_program
,
filename
=
filename
)
def
_save_train_status
(
self
,
path
,
train_status
):
d
=
{}
d
[
"epoch_no"
]
=
train_status
.
_epoch_no
file_name
=
"{}/fleet_train_status"
.
format
(
path
)
with
open
(
file_name
,
'w'
)
as
f
:
json
.
dump
(
d
,
f
)
def
_load_train_status
(
self
,
path
):
file_name
=
"{}/fleet_train_status"
.
format
(
path
)
r
=
TrainStatus
()
if
not
os
.
path
.
isfile
(
file_name
):
return
r
d
=
{}
with
open
(
file_name
,
'r'
)
as
f
:
d
=
json
.
load
(
f
)
assert
"epoch_no"
in
d
,
"Can't find epoch_no in dict from train_status file:{}"
.
format
(
d
)
r
.
_epoch_no
=
d
[
"epoch_no"
]
assert
r
.
_epoch_no
>=
0
,
"Data in checkpoint file is not valid:{}"
.
format
(
d
)
return
r
def
_get_last_checkpoint_no
(
self
,
root_path
,
fs
):
"""
only get the first depth
"""
max_no
=
-
1
d
=
{}
dirs
=
fs
.
list_dirs
(
root_path
)
for
dir
in
dirs
:
g
=
dir
.
split
(
"."
)
if
len
(
g
)
!=
2
:
continue
if
g
[
0
]
!=
"__paddle_fleet_checkpoint__"
:
continue
try
:
n
=
int
(
g
[
1
])
if
n
>
max_no
:
max_no
=
n
except
:
continue
return
max_no
def
clean_redundant_check_points
(
self
,
root_path
,
fs
=
LocalFS
(),
checkpoint_num
=
1
):
max_no
=
self
.
_get_last_checkpoint_no
(
root_path
,
fs
)
if
max_no
<
0
:
return
if
checkpoint_num
<
1
:
checkpoint_num
=
1
dirs
=
fs
.
list_dirs
(
root_path
)
for
dir
in
dirs
:
g
=
dir
.
split
(
"."
)
if
len
(
g
)
!=
2
:
continue
if
g
[
0
]
!=
self
.
_checkoint_prefix
:
continue
try
:
n
=
int
(
g
[
1
])
if
n
<=
max_no
-
checkpoint_num
:
path
=
"{}/{}.{}"
.
format
(
root_path
,
self
.
_checkoint_prefix
,
n
)
fs
.
rmr
(
path
)
except
Exception
as
e
:
print
(
e
)
continue
def
save_check_point
(
self
,
executor
,
path
,
train_status
,
main_program
=
None
,
fs
=
LocalFS
(),
local_cache_path
=
".cache"
,
remain_all_checkpoint
=
True
):
"""
This function save persistables and current epoch num to path.
"""
if
main_program
==
None
:
main_program
=
self
.
_transpiled_program
if
not
fs
.
stat
(
path
):
fs
.
mkdir
(
path
)
max_no
=
self
.
_get_last_checkpoint_no
(
path
,
fs
=
fs
)
if
max_no
<
0
:
max_no
=
-
1
real_path
=
"{}/{}.{}"
.
format
(
path
,
self
.
_checkoint_prefix
,
max_no
+
1
)
tmp_path
=
"{}.tmp"
.
format
(
real_path
)
saved_path
=
tmp_path
local_fs
=
LocalFS
()
cache_path
=
None
if
fs
.
need_upload_download
():
cache_path
=
"{}/{}.{}.saved_cache"
.
format
(
local_cache_path
,
self
.
_checkoint_prefix
,
max_no
+
1
)
if
not
local_fs
.
stat
(
cache_path
):
local_fs
.
mkdir
(
cache_path
)
saved_path
=
cache_path
self
.
save_persistables
(
executor
=
executor
,
dirname
=
saved_path
,
main_program
=
main_program
,
filename
=
self
.
_param_file_name
)
self
.
_save_train_status
(
path
=
saved_path
,
train_status
=
train_status
)
if
fs
.
need_upload_download
():
fs
.
delete
(
tmp_path
)
fs
.
upload
(
cache_path
,
tmp_path
)
fs
.
mv
(
tmp_path
,
real_path
)
if
not
remain_all_checkpoint
:
self
.
clean_redundant_check_points
(
path
)
def
load_check_point
(
self
,
executor
,
path
,
trainer_id
,
main_program
=
None
,
fs
=
LocalFS
(),
local_cache_path
=
".cache"
,
ignore_empty
=
True
):
"""
This function load persistables and current epoch num from path.
"""
max_no
=
self
.
_get_last_checkpoint_no
(
path
,
fs
)
if
not
ignore_empty
:
assert
max_no
>=
0
,
"Can't find checkpoint"
if
max_no
<
0
:
return
None
local_fs
=
LocalFS
()
if
fs
.
need_upload_download
():
cache_path
=
"{}/{}.{}.load_cache.{}"
.
format
(
local_cache_path
,
self
.
_checkoint_prefix
,
max_no
,
trainer_id
)
if
local_fs
.
stat
(
cache_path
):
local_fs
.
delete
(
cache_path
)
real_path
=
"{}/{}.{}"
.
format
(
path
,
self
.
_checkoint_prefix
,
max_no
)
load_path
=
real_path
if
fs
.
need_upload_download
():
fs
.
download
(
real_path
,
cache_path
)
load_path
=
cache_path
if
main_program
==
None
:
main_program
=
self
.
_transpiled_program
io
.
load_persistables
(
executor
=
executor
,
dirname
=
load_path
,
main_program
=
main_program
,
filename
=
self
.
_param_file_name
)
return
self
.
_load_train_status
(
load_path
)
fleet
=
Collective
()
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
24a063f6
...
...
@@ -28,6 +28,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_communicator_geo)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_half_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_sync
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_api_input
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_checkpoint
)
foreach
(
TEST_OP
${
MIXED_DIST_TEST_OPS
}
)
list
(
REMOVE_ITEM TEST_OPS
${
TEST_OP
}
)
endforeach
()
...
...
@@ -301,6 +302,7 @@ if(WITH_DISTRIBUTE)
if
(
WITH_GPU
)
# NOTE. test_launch only work in gpu collective mode
bash_test_modules
(
test_launch MODULES test_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
py_test_modules
(
test_fleet_checkpoint MODULES test_fleet_checkpoint
)
endif
()
bash_test_modules
(
test_launch_ps MODULES test_launch_ps.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_checkpoint.py
0 → 100644
浏览文件 @
24a063f6
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.collective
import
CollectiveOptimizer
,
fleet
,
TrainStatus
import
os
from
paddle.distributed.fs_wrapper
import
LocalFS
,
BDFS
class
FleetTest
(
unittest
.
TestCase
):
def
_test_check_point
(
self
,
fs
,
dir_path
):
file_name
=
"persistables"
os
.
environ
[
"TRAINING_ROLE"
]
=
"TRAINER"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:6070"
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
image
=
fluid
.
data
(
name
=
'img'
,
shape
=
[
None
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
image
,
label
],
place
=
fluid
.
CPUPlace
())
predict
=
fluid
.
layers
.
fc
(
input
=
image
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
optimizer
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.001
)
dist_optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
dist_optimizer
.
minimize
(
avg_loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
status
=
TrainStatus
(
2
)
fleet
.
save_check_point
(
exe
,
dir_path
,
train_status
=
status
,
fs
=
fs
)
n1
=
fleet
.
_get_last_checkpoint_no
(
dir_path
,
fs
=
fs
)
status2
=
fleet
.
load_check_point
(
exe
,
dir_path
,
trainer_id
=
0
,
fs
=
fs
)
self
.
assertEqual
(
status2
,
status
)
fleet
.
save_check_point
(
exe
,
dir_path
,
train_status
=
status
,
fs
=
fs
)
n2
=
fleet
.
_get_last_checkpoint_no
(
dir_path
,
fs
=
fs
)
self
.
assertEqual
(
n2
,
n1
+
1
)
fleet
.
clean_redundant_check_points
(
dir_path
,
fs
=
fs
)
def
test_hdfs_check_point
(
self
):
try
:
fs
=
BDFS
(
"xxxx"
,
"xxxx"
,
1
*
1000
,
1
*
1000
)
dir_path
=
"/user/Paddle_Data/gongweibao/edl_test/my_paddle_model"
self
.
_test_check_point
(
fs
,
dir_path
)
except
Exception
as
e
:
print
(
e
)
def
test_local_check_point
(
self
):
fs
=
LocalFS
()
dir_path
=
"./my_paddle_model"
self
.
_test_check_point
(
fs
,
dir_path
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_launch.sh
浏览文件 @
24a063f6
...
...
@@ -6,6 +6,7 @@ launch_py=${PADDLE_BINARY_DIR}/python/paddle/distributed/launch.py
python
${
launch_py
}
multi_process.py
# use paddlecloud
echo
"begin test use paddlecloud"
cluster_node_ips
=
"10.0.0.1"
node_ip
=
"10.0.0.1"
export
PADDLE_TRAINERS_NUM
=
2
...
...
@@ -14,7 +15,7 @@ export PADDLE_TRAINERS=127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_PORT
=
35019
export
PADDLE
_PORTS_NUM
=
2
export
TRAINER
_PORTS_NUM
=
2
distributed_args
=
"--use_paddlecloud --cluster_node_ips=
${
cluster_node_ips
}
--node_ip=
${
node_ip
}
--selected_gpus=0,1 --log_dir=testlog"
CUDA_VISIBLE_DEVICES
=
0,1 python
${
launch_py
}
${
distributed_args
}
multi_process.py
...
...
@@ -47,8 +48,9 @@ if [ -f $file_1 ]; then
rm
$file_1
fi
unset
PADDLE_PORT
unset
PADDLE
_PORTS_NUM
unset
TRAINER
_PORTS_NUM
echo
""
echo
"paddle.distributed.launch async poll process test"
...
...
python/requirements.txt
浏览文件 @
24a063f6
...
...
@@ -19,3 +19,4 @@ decorator
prettytable
objgraph
astor
pathlib
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录