__init__.py 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging

import paddle.fluid as fluid
import paddle.fluid.io as io
import paddle.fluid.transpiler.distribute_transpiler as dist_transpiler
19 20 21 22
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.framework import Program
23

T
tangwei12 已提交
24 25 26
from paddle.fluid.incubate.fleet.base.fleet_base import Fleet
from paddle.fluid.incubate.fleet.base.fleet_base import Mode
from paddle.fluid.incubate.fleet.base.fleet_base import DistributedOptimizer
27

28
from paddle.fluid import compiler
29

30 31
import os
import sys
32
import six
33 34 35


class LambConfig(object):
36
    def __init__(self):
37 38 39 40
        pass


class DistFCConfig(object):
41
    def __init__(self):
42
        pass
43 44


45 46 47
class Collective(Fleet):
    def __init__(self):
        super(Collective, self).__init__(Mode.COLLECTIVE)
T
tangwei12 已提交
48
        self._local_ip = 0
49

50 51
        self.startup_program = None
        self._origin_program = None
52
        self._transpiled_program = None
53 54
        self.main_program = None

T
tangwei12 已提交
55
    def init_worker(self):
56 57 58
        logging.warn(
            "You should not call 'init_worker' method for collective mode.")

T
tangwei12 已提交
59
    def run_worker(self, main_programs=None, scopes=None):
60 61 62
        logging.warn(
            "You should not call 'run_worker' method for collective mode.")

T
tangwei12 已提交
63
    def init_server(self, model_dir=None):
64 65 66
        logging.warn(
            "You should not call 'init_server' method for collective mode.")

T
tangwei12 已提交
67
    def run_server(self):
68 69 70 71 72 73 74 75
        logging.warn(
            "You should not call 'run_server' method for collective mode.")

    def stop_worker(self):
        logging.warn(
            "You should not call 'stop_worker' method for collective mode.")

    def distributed_optimizer(self, optimizer, strategy=None):
76
        self._optimizer = \
77
            CollectiveOptimizer(optimizer, strategy)
T
tangwei12 已提交
78
        return self._optimizer
79 80

    def save_inference_model(self,
81
                             executor,
82 83 84 85 86
                             dirname,
                             feeded_var_names=None,
                             target_vars=None,
                             main_program=None,
                             export_for_deployment=True):
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        """
        Prune the given `main_program` to build a new program especially for
        inference, and then save it and all related parameters to given
        `dirname` by the `executor`.
        """
        assert isinstance(executor, Executor), \
            "In fleet.save_inference_model() function, executor must be as" \
            " Executor type."

        if main_program is None:
            main_program = self._origin_program
        assert isinstance(main_program, Program), \
            "In fleet.save_inference_model() function, main_program " \
            "must be as Program type."

102
        io.save_inference_model(dirname, feeded_var_names, target_vars,
103
                                executor, main_program, None, None,
104 105
                                export_for_deployment)

106
    def save_persistables(self, executor, dirname, main_program=None):
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        """
        This function filters out all variables with `persistable==True` from
        the give `main_program` and then saves these variables to the folder
        `dirname` or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """
        assert isinstance(executor, Executor), \
            "In fleet.save_inference_model() function, executor must be as" \
            " Executor type."

        if main_program is None:
            main_program = self._origin_program

        assert isinstance(main_program, Program), \
            "In fleet.save_inference_model() function, main_program " \
            "must be as Program type."

128 129
        io.save_persistables(executor, dirname, main_program, None)

130 131 132 133

fleet = Collective()


134 135 136 137 138 139 140 141 142 143 144 145 146
class DistributedStrategy(fluid.BuildStrategy):
    """
    Init function of DistributedStrategy
    """

    def __init__(self):
        super(DistributedStrategy, self).__init__()
        self.use_local_sgd = False
        self.use_dist_fc = False

        self.dist_fc_config = None  # DistFCConfig
        self.mode = "nccl2"  # or collective
        self.collective_mode = None  # local_sgd or grad_allreduce
G
gongweibao 已提交
147
        self.nccl_comm_num = 1
M
mapingshuo 已提交
148 149
        self.forward_recompute = False
        self.recompute_checkpoints = []
150 151 152

        self.exec_strategy = fluid.ExecutionStrategy()

153 154 155
        # configurations below are used for unit test
        self._ut4grad_allreduce = False

156

157 158
class CollectiveOpBasedOptimizer(DistributedOptimizer):
    """
159 160
    Collective Operator Base Class For Distributed Optimizer
    The class is invisible to a user
161 162 163
    """

    def __init__(self, optimizer, strategy=None):
164 165 166
        assert isinstance(
            strategy,
            DistributedStrategy), "strategy must be DistributedStrategy"
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        super(CollectiveOpBasedOptimizer, self).__init__(optimizer, strategy)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        return self._optimizer.backward(loss, startup_program, parameter_list,
                                        no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)


182 183 184 185 186 187 188 189 190 191 192
class CollectiveOptimizer(DistributedOptimizer):
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.
    """

193
    def __init__(self, optimizer, strategy=DistributedStrategy()):
194 195
        if strategy is None:
            strategy = DistributedStrategy()
196
        super(CollectiveOptimizer, self).__init__(optimizer, strategy)
197
        if strategy.forward_recompute:
M
mapingshuo 已提交
198 199 200 201
            self.forward_recompute = True
            self.recompute_checkpoints = strategy.recompute_checkpoints
        else:
            self.forward_recompute = False
202
        self.print_config = False
203 204 205 206 207 208 209 210 211 212 213 214 215

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        return self._optimizer.backward(loss, startup_program, parameter_list,
                                        no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)

216
    def _check_condition(self, name, **kwargs):
217
        for k, v in six.iteritems(kwargs):
218 219 220 221 222 223 224 225
            if v is True:
                assert False, "you can't use %s and %s together" % (name, k)

    def _check_collective_mode(self, main_program, optimizer, strategy):
        """
        Check the conflict condtions.
        """
        if strategy.use_local_sgd:
226 227
            strategy.mode = "collective"
            strategy.collective_mode = "local_sgd"
228 229 230 231 232 233 234 235 236 237 238 239 240 241
            self._check_condition(
                "use_local_sgd",
                use_dgc=main_program._enable_dgc,
                use_dist_fc=strategy.use_dist_fc,
                use_lamb=main_program._use_lamb)

        if strategy.use_dist_fc:
            self._check_condition(
                "use_dist_fc",
                use_dgc=main_program._enable_dgc,
                use_local_sgd=strategy.use_local_sgd,
                use_lamb=main_program._use_lamb)
            assert strategy.dist_fc_config is not None, "DistributedStrategy.dist_fc_config should be set"

242 243 244 245 246 247 248 249
        if strategy._ut4grad_allreduce:
            strategy.mode = "collective"
            strategy.collective_mode = "grad_allreduce"
            self._check_condition(
                "_ut4grad_allreduce",
                use_dgc=main_program._enable_dgc,
                use_lamb=main_program._use_lamb)

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        if self._strategy.collective_mode=="local_sgd" \
                or self._strategy.collective_mode == "grad_allreduce":
            assert self._strategy.mode == "collective", \
                "local_sgd and grad_allreduce can be used under collective mode"

    def _transpile(self, startup_program, main_program):
        """
        Transpile the programs to distributed programs. And add the variables.
        """
        worker_endpoints = fleet.worker_endpoints()
        trainer_id = fleet.worker_index()
        current_endpoint = fleet.worker_endpoints()[trainer_id]
        worker_endpoints_env = ','.join(worker_endpoints)
        trainers_num = fleet.worker_num()

        if self.print_config:
            print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
                  trainer_id:{}".format(worker_endpoints, trainers_num,
                                        current_endpoint, trainer_id))

        # call transpiler
        config = dist_transpiler.DistributeTranspilerConfig()
        config.mode = self._strategy.mode
        config.collective_mode = self._strategy.collective_mode

        config.nccl_comm_num = self._strategy.nccl_comm_num
        config.use_hierarchical_allreduce = self._strategy.use_hierarchical_allreduce
        config.hierarchical_allreduce_inter_nranks = self._strategy.hierarchical_allreduce_inter_nranks

        t = dist_transpiler.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id=trainer_id,
            trainers=worker_endpoints_env,
            startup_program=startup_program,
            program=main_program,
            current_endpoint=current_endpoint)

G
gongweibao 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    def _get_node_ips_from_endpoints(self, endpoints):
        ss = set()
        ips = []
        for ep in endpoints:
            ip = ep.split(":")[0].strip()
            if ip not in ss:
                ss.add(ip)
                ips.append(ip)
            else:
                continue

        return ips

    def _node_num(self):
        worker_endpoints = fleet.worker_endpoints()
        current_endpoint = fleet.worker_endpoints()[fleet.worker_index()]
        worker_endpoints_env = ','.join(worker_endpoints)

        node_ips = self._get_node_ips_from_endpoints(worker_endpoints)
        node_ip = current_endpoint.split(":")[0].strip()

        node_num = len(node_ips)

        return node_num

312
    def _try_to_compile(self, startup_program, main_program):
G
gongweibao 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        node_num = self._node_num()
        assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num

        exec_strategy = self._strategy.exec_strategy

        if node_num <= 1:
            if self._strategy.nccl_comm_num > 1:
                logging.warn("set nccl_comm_num=1 since you only have 1 node.")
            self._strategy.nccl_comm_num = 1

            if self._strategy.use_hierarchical_allreduce:
                logging.warn(
                    "set use_hierarchical_allreduce=False since you only have 1 node."
                )
            self._strategy.use_hierarchical_allreduce = False

        sync_allreduce = os.getenv("FLAGS_sync_nccl_allreduce")
        if sync_allreduce is None or sync_allreduce == "1":
            exec_strategy.num_threads = self._strategy.nccl_comm_num + 1
            if self._strategy.use_hierarchical_allreduce:
                exec_strategy.num_threads = 2 * self._strategy.nccl_comm_num + 1
            if exec_strategy.num_threads > 4:
                logging.warn(
                    "if you use use_hierarchical_allreduce or "
                    "with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0"
                )

340 341 342 343 344 345 346 347 348 349 350
        # NOTE. open sync_batch_norm will hang when use multi num_threads
        sync_batch_norm = self._strategy.sync_batch_norm
        if sync_batch_norm is not None and sync_batch_norm is True:
            self._strategy.nccl_comm_num = 1
            self._strategy.use_hierarchical_allreduce = False
            exec_strategy.num_threads = 1
            logging.warn(
                "use sync_batch_norm will hang when set num_threads > 1, so "
                "set num_threads=1, nccl_comm_num=1, use_hierarchical_allreduce=False."
            )

G
gongweibao 已提交
351 352 353 354 355 356 357
        if self.print_config:
            print("node_num:", node_num, "num_threads:",
                  exec_strategy.num_threads, "use_hierarchical_allreduce:",
                  self._strategy.use_hierarchical_allreduce, "nccl_comm_num:",
                  self._strategy.nccl_comm_num, "FLAGS_sync_nccl_allreduce:",
                  sync_allreduce)

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        self._transpile(startup_program, main_program)

        if self._strategy.mode == "collective":
            return main_program

        self._strategy.num_trainers = fleet.worker_num()
        self._strategy.trainer_id = fleet.worker_index()
        self._strategy.trainers_endpoints = fleet.worker_endpoints()
        self._strategy.enable_backward_optimizer_op_deps = True

        self._compiled_program = compiler.CompiledProgram(main_program)

        self._compiled_program.with_data_parallel(
            loss_name=self._loss.name,
            build_strategy=self._strategy,
            exec_strategy=self._strategy.exec_strategy,
            share_vars_from=None)

        return self._compiled_program

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        minimize a program through loss
        Args:
            loss (Variable|Variable List): loss variable or loss variable list to run optimization.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        Note that in parameter server mode, a worker will not get anything about optimize_os
        Because optmizer algorithms run on pserver side. We will make this usable in pserver
        process, but currently the optimization part is written into Fleet(). A user does not
        need to care about how to startup a pserver node.
        """
399 400 401 402
        main_program = loss.block.program
        if startup_program is None:
            startup_program = fluid.default_startup_program()
        fleet.startup_program = startup_program
403

404
        self._loss = loss
405

406 407
        self._check_collective_mode(main_program, self._optimizer,
                                    self._strategy)
408

M
mapingshuo 已提交
409 410 411 412 413 414 415
        if self.forward_recompute:
            assert (isinstance(self.recompute_checkpoints, list) and
                    len(self.recompute_checkpoints) > 0)
            self._optimizer = \
                fluid.optimizer.RecomputeOptimizer(self._optimizer)
            self._optimizer._set_checkpoints(self.recompute_checkpoints)

416
        optimize_ops, param_grads = self._optimizer.minimize(
G
gongweibao 已提交
417 418 419 420
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
421

422 423
        fleet._origin_program = main_program.clone(for_test=False)
        fleet._transpiled_program = main_program
424
        fleet.main_program = self._try_to_compile(startup_program, main_program)
425 426

        return optimize_ops, param_grads