nn.py 56.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69
    'fc',
    'embedding',
    'row_conv',
    'layer_norm',
D
dengkaipeng 已提交
70
    'spectral_norm',
X
Xin Pan 已提交
71 72 73 74
    'one_hot',
    'autoincreased_step_counter',
    'clip',
    'clip_by_norm',
C
chengduo 已提交
75 76
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
Y
Yu Yang 已提交
77 78
]

79
OP_NAMEMAPPING = {
80 81 82 83 84 85 86 87
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
88
    'elementwise_mod': 'remainder',
89 90
}

Y
Yu Yang 已提交
91

92 93
def _get_reduce_dim(dim, input):
    """
94
    Internal function for reduce_sum, reduce_mean, reduce_prod.
95 96 97 98 99 100 101 102 103
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
104
                "The type of dim must be int, list, tuple or range, but received {}".format(
105
                    type(dim)
106 107
                )
            )
108 109 110 111 112 113 114 115 116 117
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


118
@dygraph_only
119 120 121
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
122 123 124 125
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
126
        op = getattr(_legacy_C_ops, op_name)
127 128 129
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
130 131
            op = getattr(
                _C_ops,
132 133
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
134 135 136
            out = op(x, y)

        if _in_legacy_dygraph():
137
            op = getattr(_legacy_C_ops, op_name)
138
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
139 140 141 142 143 144 145 146 147 148 149 150 151 152
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
153
    r"""
154 155
    :api_attr: Static Graph

156
    **Fully Connected Layer**
Y
Yu Yang 已提交
157

158 159 160
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
161
    which represents a fully connected weight matrix from each input unit to
162 163 164 165
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
166
    is not None, a bias variable will be created and added to the output.
167
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
168

169
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
170

171 172 173 174
    .. math::

        Out = Act({XW + b})

175
    When the input is a list of Tensor(or LoDTensor):
176 177 178

    .. math::

179
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
180 181 182

    In the above equation:

183 184 185
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
186
    * :math:`b`: The bias parameter created by this layer (if needed).
187
    * :math:`Act`: The activation function.
188
    * :math:`Out`: The output Tensor.
189 190 191

    .. code-block:: text

192 193 194 195 196 197 198 199 200 201 202 203 204 205
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
206 207 208 209 210 211 212 213 214 215 216 217 218
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
219
    Args:
220 221 222
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
223
        size(int): The number of output units in this layer, which also means the feature size of output
224 225
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
226
            two dimensions. If this happens, the multidimensional tensor will first be flattened
227 228
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
229
            dimensions will be flatten to form the first dimension of the final matrix (height of
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
245 246

    Raises:
247
        ValueError: If dimensions of the input Tensor is less than 2.
248 249 250 251

    Examples:
        .. code-block:: python

252
          import paddle.fluid as fluid
253 254
          import paddle
          paddle.enable_static()
255
          # when input is single tensor
256
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
257
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
258 259

          # when input are multiple tensors
260 261
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
262
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
263
    """
C
caoying03 已提交
264
    helper = LayerHelper("fc", **locals())
265
    check_type(input, 'input', (list, tuple, Variable), 'fc')
266 267
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
268
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
269
    dtype = helper.input_dtype()
270 271 272
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
273
    mul_results = []
274 275
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
276 277
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
278 279 280
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
281

282 283 284
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
285
        tmp = helper.create_variable_for_type_inference(dtype)
286 287 288 289 290 291
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
292 293 294 295
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
296
    else:
X
Xin Pan 已提交
297
        pre_bias = helper.create_variable_for_type_inference(dtype)
298 299 300 301 302 303
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
304 305 306 307
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
308 309


T
tangwei12 已提交
310
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
311 312 313 314 315 316 317 318 319
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
320
    r"""
321
    :api_attr: Static Graph
322

323 324 325 326 327 328 329 330 331 332 333 334
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

335
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
353

354 355 356 357
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
358

359
        Case 2:
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
375 376

    Args:
377 378 379 380 381 382
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
383
            affects the performance of the backwards gradient update. It is recommended to set
384
            True because sparse update is faster. But some optimizer does not support sparse update,
385
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
386 387 388 389 390
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
391
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
392 393 394 395 396 397
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
398
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
399
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
400
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
401 402 403
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
404

405
    Returns:
406
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
407

408 409
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
410

B
bdzhuxiaoning 已提交
411
          import paddle.fluid as fluid
412
          import numpy as np
413 414
          import paddle
          paddle.enable_static()
415

416 417
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
418
          # example 1
419 420 421 422 423 424 425 426 427
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
428
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
429 430 431
    """

    helper = LayerHelper('embedding', **locals())
432 433 434 435 436 437 438 439 440
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
441 442 443 444 445 446 447 448 449

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

450 451 452
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
453
    tmp = helper.create_variable_for_type_inference(dtype)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
472 473 474
    return tmp


475 476 477 478 479 480 481 482 483 484 485
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
486
    r"""
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
532
        'is_distributed': True,
533 534
    }
    # this is only for compatible with embedding op
535 536 537 538 539 540 541 542 543
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
544 545 546 547 548
    if len(outs) == 1:
        return outs[0]
    return outs


549 550 551 552 553 554 555 556 557 558 559
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
560
    r"""
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
606
        'is_distributed': True,
607 608
    }
    # this is only for compatible with embedding op
609 610 611 612 613 614 615 616 617
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
618
    if len(outs) == 1:
Y
yaoxuefeng 已提交
619 620 621 622
        return outs[0]
    return outs


623 624 625
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
639
        float32 now.
Y
yaoxuefeng 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
659 660 661
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
662 663 664 665 666 667
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
668 669 670 671 672 673 674 675 676 677 678 679 680
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
681
    if len(outs) == 1:
682 683 684 685
        return outs[0]
    return outs


686 687 688
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
689
    r"""
H
hutuxian 已提交
690 691 692 693 694 695 696
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
697
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
698
            contains the IDs information.
699
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
700
            each embedding vector respectively.
701
        dtype(str): The dtype refers to the data type of output tensor. Only supports
702
        float32 now.
H
hutuxian 已提交
703 704 705 706 707 708 709 710 711 712

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
713
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
714 715 716 717
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
718 719 720
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
721 722 723 724 725 726
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
727 728 729 730 731 732 733 734 735 736 737 738 739
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
740 741 742 743 744
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
745
@templatedoc()
746 747 748 749 750 751 752 753 754 755 756
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
757
    r"""
758 759
    :api_attr: Static Graph

760 761 762 763
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
764 765 766

    The formula is as follows:

Y
yuyang18 已提交
767
    ..  math::
G
guosheng 已提交
768

769
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
770

771
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
772

773
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
774

775 776 777 778 779
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
780

G
guosheng 已提交
781
    Args:
782
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
783 784 785 786 787
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
788
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
789 790 791 792
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
793 794
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
795
            a default :code:`ParamAttr` would be added as scale. The
796 797
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
798 799
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
800
            a default :code:`ParamAttr` would be added as bias. The
801
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
802
        act(str, optional): Activation to be applied to the output of layer normalization.
803 804
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
805 806

    Returns:
807
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
808 809 810

    Examples:

811 812
        .. code-block:: python

813 814
            import paddle
            paddle.enable_static()
815 816 817
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
818
    """
819 820 821
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
822
    helper = LayerHelper('layer_norm', **locals())
823 824 825
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
826 827 828 829 830 831 832
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
833 834 835 836 837 838 839 840 841
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
842
        inputs['Scale'] = scale
843 844
    else:
        if param_attr:
T
tianshuo78520a 已提交
845
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
846
    if shift:
847 848 849 850 851 852
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
853
        inputs['Bias'] = bias
854 855
    else:
        if bias_attr:
T
tianshuo78520a 已提交
856
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
857 858

    # create output
859 860 861 862 863 864
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
865
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
866

867 868 869 870 871 872 873 874 875 876
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
877 878 879 880

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
881
@templatedoc()
882
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
883
    r"""
884 885
    :api_attr: Static Graph

D
dengkaipeng 已提交
886 887
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
888
    This operation calculates the spectral normalization value of weight parameters of
889
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
890 891
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
892

D
dengkaipeng 已提交
893 894 895
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
896
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
897 898

    Step 2:
T
tianshuo78520a 已提交
899
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
900 901
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
902

903
    .. math::
D
dengkaipeng 已提交
904 905 906 907 908 909

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
910
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
911 912 913 914

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
915

D
dengkaipeng 已提交
916
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
917

918

D
dengkaipeng 已提交
919 920 921
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
922
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
923 924 925
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
926 927 928
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
929 930

    Returns:
C
Chen Long 已提交
931
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
932
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
933 934

    Examples:
K
Kaipeng Deng 已提交
935
       .. code-block:: python
D
dengkaipeng 已提交
936

937
            import paddle
K
Kaipeng Deng 已提交
938

939
            paddle.enable_static()
C
Chen Long 已提交
940
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
941
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
942
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
943 944
    """
    helper = LayerHelper('spectral_norm', **locals())
945 946 947
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
948 949 950
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
951
    dtype = weight.dtype
D
dengkaipeng 已提交
952 953

    # create intput and parameters
954
    input_shape = weight.shape
955
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
956 957 958 959 960
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
961 962 963
    h = input_shape[dim]
    w = np.prod(input_shape) // h

964 965 966 967 968 969
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
970
    u.stop_gradient = True
971 972 973 974 975 976
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
977
    v.stop_gradient = True
D
dengkaipeng 已提交
978

979 980 981 982 983 984 985
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
986
    # create output
987
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
988

989 990 991 992 993 994 995 996 997 998 999 1000
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
1001

1002
    return out
D
Dun 已提交
1003 1004


C
caoying03 已提交
1005
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1006
    """
1007

Y
yangyaming 已提交
1008
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1009 1010

    Args:
1011 1012 1013
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
1014 1015
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
1016 1017
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
1018
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
1019
            output Tensor. The result tensor will have one fewer dimension
1020 1021 1022 1023
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
1024 1025

    Returns:
1026 1027
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
1028

1029 1030
    Raises:
        TypeError, if out data type is different with the input data type.
1031

G
guosheng 已提交
1032 1033 1034
    Examples:
        .. code-block:: python

1035
            import paddle.fluid as fluid
1036 1037
            import paddle
            paddle.enable_static()
G
guosheng 已提交
1038 1039 1040
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
1041
            # Each example is followed by the corresponding output tensor.
1042
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
1043 1044 1045 1046
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
1047

1048
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
1049 1050
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
1051
            # Each example is followed by the corresponding output tensor.
1052
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
1053 1054
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
1055

G
guosheng 已提交
1056
    """
1057 1058
    reduce_all, dim = _get_reduce_dim(dim, input)

1059
    if in_dygraph_mode():
1060
        return _C_ops.sum(input, dim, None, keep_dim)
1061
    elif _in_legacy_dygraph():
1062 1063 1064
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
1065
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
1066
    check_variable_and_dtype(
1067 1068 1069 1070 1071
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
1072
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
1073
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1074 1075 1076 1077 1078 1079
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
1080
    return out
G
guosheng 已提交
1081 1082


Y
yuyang18 已提交
1083
@templatedoc()
1084
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
1085
    """
1086 1087
    :api_attr: Static Graph

Y
yuyang18 已提交
1088
    ${comment}
1089 1090

    Args:
Y
yuyang18 已提交
1091
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
1092 1093
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
1094 1095 1096 1097 1098
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
1099
        ${out_comment}.
1100 1101

    Examples:
B
Bai Yifan 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
1114 1115
    """
    helper = LayerHelper('row_conv', **locals())
1116
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
1117
    dtype = helper.input_dtype()
1118
    filter_shape = [future_context_size + 1, input.shape[-1]]
1119 1120 1121
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
1122
    out = helper.create_variable_for_type_inference(dtype)
1123 1124 1125 1126 1127
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
1128
    return helper.append_activation(out)
1129 1130


1131
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
1132
def one_hot(input, depth, allow_out_of_range=False):
1133
    """
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
1172
                        [0., 1., 0., 0.],
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
1185
            The second dimension in X is 5, which is greater than depth.
1186 1187
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
1188 1189

    Args:
1190 1191 1192
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
1193
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
1194
            is word id, depth is generally the dictionary size.
1195
        allow_out_of_range(bool): A bool value indicating whether the input
1196 1197 1198 1199
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
1200 1201

    Returns:
1202
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
1203 1204

    Examples:
C
caoying03 已提交
1205
        .. code-block:: python
1206

1207
            import paddle
1208
            import paddle.fluid as fluid
1209 1210
            paddle.enable_static()

1211 1212 1213
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
1214
    """
J
Jiabin Yang 已提交
1215
    if _non_static_mode():
S
songyouwei 已提交
1216 1217 1218
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
1219 1220
                1,
            ), "depth of type Variable should have shape [1]"
1221
            depth = depth.item(0)
1222 1223 1224
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
1225 1226
        out.stop_gradient = True
        return out
1227

1228
    helper = LayerHelper("one_hot", **locals())
1229
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
1230
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
1231
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
1232

1233 1234
    if not isinstance(depth, Variable):
        # user attribute
1235
        inputs = {'X': input}
Y
Yi Liu 已提交
1236
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
1237
    else:
1238 1239 1240
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
1241 1242 1243
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
1244
    one_hot_out.stop_gradient = True
1245
    return one_hot_out
Y
Yu Yang 已提交
1246 1247


Y
Yu Yang 已提交
1248
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
1249
    """
1250 1251
    :api_attr: Static Graph

1252 1253
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
1254
    and the step size is 1.
Y
Yu Yang 已提交
1255 1256

    Args:
Y
Yibing Liu 已提交
1257 1258 1259
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
1260

1261
    Returns:
Y
Yibing Liu 已提交
1262
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
1263 1264 1265 1266

    Examples:
        .. code-block:: python

1267
           import paddle.fluid as fluid
1268 1269
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
1270
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
1271
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
1272 1273
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
1274 1275
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
1276
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
1277 1278 1279 1280
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
1281 1282
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
1283
    if is_new_var:
1284 1285 1286
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
1287
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
1288 1289
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
1290
            outputs={'Out': [counter]},
1291 1292
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
1293 1294 1295
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
1296 1297


1298
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
1299
    """
1300
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
1301 1302
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
1303

M
minqiyang 已提交
1304
    For example:
H
haowang101779990 已提交
1305 1306 1307

    .. code-block:: text

M
minqiyang 已提交
1308
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
1309
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
1310

Y
Yibing Liu 已提交
1311
    Args:
1312
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
1313
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
1314
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
1315 1316

    Returns:
1317
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
1318 1319 1320 1321

    Examples:
        .. code-block:: python

1322 1323 1324
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
1325

Y
Yibing Liu 已提交
1326
    """
J
Jiabin Yang 已提交
1327
    if _non_static_mode():
L
Leo Chen 已提交
1328 1329 1330
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
1331
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
1332 1333 1334 1335 1336
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
1337
        if _in_legacy_dygraph():
1338
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
1339
            return out
1340
        return _C_ops.unsqueeze(input, axes)
1341 1342

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
1370
        if utils._contain_var(axes):
1371
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
1372 1373 1374
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
1375 1376
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
1377 1378 1379 1380 1381 1382
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
1383

1384 1385
    return out

1386

1387
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
1388
    if _non_static_mode():
1389
        op = getattr(_legacy_C_ops, op_name)
1390 1391 1392 1393
        if binary_op:
            return op(x, y)
        else:
            return op(x)
1394
    check_variable_and_dtype(
1395 1396
        x,
        "x",
1397
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
1398 1399
        op_name,
    )
1400
    if y is not None:
1401
        check_variable_and_dtype(
1402 1403
            y,
            "y",
1404
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
1405 1406
            op_name,
        )
1407
    if out is not None:
1408
        check_type(out, "out", Variable, op_name)
1409

M
minqiyang 已提交
1410 1411
    helper = LayerHelper(op_name, **locals())

1412 1413 1414
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
1415 1416
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
1417 1418

    if out is None:
1419
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
1420 1421

    if binary_op:
1422 1423 1424
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
1425 1426 1427 1428 1429 1430
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


1431 1432 1433
@templatedoc()
def clip(x, min, max, name=None):
    """
1434
        :old_api: paddle.fluid.layers.clip
1435

1436 1437 1438 1439
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
1440 1441
        min(float): ${min_comment}
        max(float): ${max_comment}
1442 1443
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
1444
                             For more information, please refer to :ref:`api_guide_Name`
1445 1446

    Returns:
S
SunGaofeng 已提交
1447 1448 1449 1450
        ${out_comment}

    Return Type:
        ${out_type}
1451 1452 1453 1454

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
1455
            import paddle.fluid as fluid
S
SunGaofeng 已提交
1456
            input = fluid.data(
1457 1458
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
1459 1460 1461
    """

    helper = LayerHelper("clip", **locals())
1462
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
1463 1464

    if name is None:
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
1491 1492 1493
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
1494 1495

    Returns:
1496
        Tensor:
W
wangguanzhong 已提交
1497

1498
        out(${out_type}): ${out_comment}
1499

W
wangguanzhong 已提交
1500

1501 1502 1503
    Examples:
        .. code-block:: python

1504
            import paddle
1505
            import paddle.fluid as fluid
1506

1507 1508 1509
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
1510 1511
    """

L
lyq 已提交
1512
    if in_dygraph_mode():
1513
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
1514
    if _non_static_mode():
1515
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
1516

1517
    helper = LayerHelper("clip_by_norm", **locals())
1518
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
1519
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
1520 1521

    if name is None:
1522 1523 1524
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
1525

1526 1527 1528
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
1529

1530 1531 1532 1533 1534 1535
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
1536 1537

    return out
X
Xin Pan 已提交
1538 1539


C
chengduo 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
1551 1552 1553 1554

    Examples:
        .. code-block:: python

1555
            import paddle.fluid as fluid
1556 1557 1558 1559 1560
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
1561
    """
1562 1563 1564
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

1565
    if _non_static_mode():
1566
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
1567 1568 1569

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1570 1571 1572 1573 1574 1575
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
1576 1577 1578 1579 1580 1581
    return out


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
1582 1583 1584 1585 1586 1587 1588 1589 1590
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

1591
        Output is LoDTensor:
1592 1593 1594 1595 1596 1597
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
1598 1599

    Args:
1600 1601 1602
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
1603 1604

    Returns:
1605
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
1606 1607 1608

    Examples:
        .. code-block:: python
1609

B
bdzhuxiaoning 已提交
1610 1611 1612 1613
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
1614 1615
    """

1616 1617 1618 1619 1620
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
1621 1622
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1623 1624 1625 1626 1627 1628
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
1629
    return out