loss.py 154.0 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
# TODO: define loss functions of neural network
17 18
import paddle
import paddle.fluid as fluid
19
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
20
from paddle.framework import core
21
from paddle.utils import deprecated
22 23

from ...fluid.data_feeder import check_variable_and_dtype
姜永久 已提交
24
from ...fluid.framework import _current_expected_place, in_dygraph_mode
25 26 27
from ...fluid.layer_helper import LayerHelper
from ...static import Variable
from ...tensor.manipulation import reshape
28

29 30
__all__ = []

31 32
kIgnoreIndex = -100

33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
def dice_loss(input, label, epsilon=0.00001, name=None):
    r"""

    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:

    .. math::

        dice\_loss &= 1 - \frac{2 * intersection\_area}{total\_area} \\
                  &= \frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\
                  &= \frac{(union\_area - intersection\_area)}{total\_area}


    Parameters:
        input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
                          the batch_size, :math:`D` is the number of categories. It is usually the output
                          predictions of sigmoid activation. The data type can be float32 or float64.
        label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
                          where :math:`N_1` is the batch_size. The data type can be int32 or int64.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor, which shape is [1], data type is the same as `input` .

    Example:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((3,224,224,2))
            label = paddle.randint(high=2, shape=(3,224,224,1))
            predictions = F.softmax(x)
            loss = F.dice_loss(input=predictions, label=label)
    """
    assert input.dtype in (paddle.float32, paddle.float64)
    assert label.dtype in (paddle.int32, paddle.int64)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    assert (
        len(input.shape) >= 2
    ), "The rank of input should be greater than or equal to 2."
    assert len(input.shape) == len(label.shape), (
        "The rank of input and label should be equal, "
        "but received input: %d, label: %d."
        % (len(input.shape), len(label.shape))
    )
    assert label.shape[-1] == 1, (
        "The last dimension of label should be 1, "
        "but received %d." % label.shape[-1]
    )
    assert (
        input.shape[:-1] == label.shape[:-1]
    ), "All dimensions should be equal except the last one."
    assert (
        input.numel() > 0 and label.numel() > 0
    ), "Any dimension of input and label cannot be equal to 0."
96 97 98 99 100 101

    label = paddle.squeeze(label, [-1])
    label = paddle.nn.functional.one_hot(label, input.shape[-1])
    reduce_dim = list(range(1, len(input.shape)))
    inse = paddle.sum(input * label, axis=reduce_dim)
    dice_denominator = paddle.sum(input, axis=reduce_dim) + paddle.sum(
102 103
        label, axis=reduce_dim
    )
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return paddle.mean(dice_score)


def log_loss(input, label, epsilon=1e-4, name=None):
    r"""

    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}

    Args:
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator. Data type float32.
        label (Tensor|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Tensor, which shape is [N x 1], data type is float32.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
    """
    if in_dygraph_mode():
146
        return _C_ops.log_loss(input, label, epsilon)
147 148 149 150 151 152 153

    helper = LayerHelper('log_loss', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'log_loss')
    check_variable_and_dtype(label, 'label', ['float32'], 'log_loss')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)

154 155 156 157 158 159
    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input], 'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon},
    )
160 161 162
    return loss


163 164 165 166 167 168 169 170 171
def fluid_softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
172 173
    r"""

174 175
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
176 177 178 179 180 181
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

182 183 184
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
185 186 187 188 189 190 191
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
192
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K
193 194 195 196

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
197
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K
198 199 200 201

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
202 203 204
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)
205 206 207 208 209 210

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
211 212 213
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
214 215 216 217 218
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
219
                                      if :attr:`soft_label` is set to :attr:`False`.
220 221 222
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
223 224 225
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
226 227 228 229 230
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
231
        axis (int, optional): The index of dimension to perform softmax calculations. It
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
247 248 249 250 251

            logits = paddle.to_tensor([0.4, 0.6, 0.9])
            label = paddle.randint(high=2, shape=[1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
252
            print(out)
253 254
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
255
    """
姜永久 已提交
256
    if in_dygraph_mode():
257
        if core.is_compiled_with_npu():
258
            softmax, backprop, loss = _legacy_C_ops.softmax_with_cross_entropy(
259 260 261 262 263 264 265 266 267 268 269
                logits,
                label,
                'soft_label',
                soft_label,
                'ignore_index',
                ignore_index,
                'numeric_stable_mode',
                numeric_stable_mode,
                'axis',
                axis,
            )
270
        else:
姜永久 已提交
271 272 273 274 275 276 277 278 279
            softmax, loss = _C_ops.cross_entropy_with_softmax(
                logits,
                label,
                soft_label,
                True,
                numeric_stable_mode,
                ignore_index,
                axis,
            )
280 281 282 283
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
284 285 286 287 288 289 290 291 292 293
    else:
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
294

姜永久 已提交
295 296 297 298 299 300 301 302 303 304 305 306
        outputs = {'Softmax': softmax, 'Loss': loss}
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
            backprop = helper.create_variable_for_type_inference(
                dtype=logits.dtype
            )
            outputs['Backprop'] = backprop
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': logits, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
307

姜永久 已提交
308 309
        if return_softmax:
            return loss, softmax
310

姜永久 已提交
311
        return loss
312 313 314


def npair_loss(anchor, positive, labels, l2_reg=0.002):
315 316
    """

317 318 319
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
320

321 322
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
323

324
    Args:
325
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
326
                        the data type is float32 or float64.
327
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
328 329 330 331
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

332

333 334
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
335

336 337 338
    Examples:

      .. code-block:: python
339

340
          import paddle
341

342
          DATATYPE = "float32"
343

344 345 346
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
347

348 349
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
350

351
    """
352 353 354 355 356 357 358 359 360
    check_variable_and_dtype(
        anchor, 'anchor', ['float32', 'float64'], 'npair_loss'
    )
    check_variable_and_dtype(
        positive, 'positive', ['float32', 'float64'], 'positive'
    )
    check_variable_and_dtype(
        labels, 'labels', ['float32', 'float64', 'int64'], 'labels'
    )
361 362 363 364 365 366
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = paddle.reshape(labels, shape=[batch_size, 1])
    labels = paddle.tile(labels, repeat_times=[1, batch_size])

367 368 369
    labels = paddle.equal(labels, paddle.transpose(labels, perm=[1, 0])).astype(
        'float32'
    )
370 371
    labels = labels / paddle.sum(labels, axis=1, keepdim=True)

372 373 374
    l2loss = paddle.mean(paddle.sum(paddle.square(anchor), 1)) + paddle.mean(
        paddle.sum(paddle.square(positive), 1)
    )
375 376
    l2loss = l2loss * Beta * l2_reg

377 378 379 380 381 382
    similarity_matrix = paddle.matmul(
        anchor, positive, transpose_x=False, transpose_y=True
    )
    softmax_ce = fluid_softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True
    )
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    cross_entropy = paddle.sum(labels * softmax_ce, 0)
    celoss = paddle.mean(cross_entropy)

    return l2loss + celoss


def square_error_cost(input, label):
    r"""

    This op accepts input predictions and target label and returns the
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.

    Returns:
406 407
        Tensor, The tensor storing the element-wise squared error
        difference between input and label.
408 409 410 411 412 413 414 415 416 417 418 419 420

    Examples:

        .. code-block:: python

            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
            print(output)
            # [0.01, 0.01]

    """
421
    if in_dygraph_mode():
422 423
        minus_out = _C_ops.subtract(input, label)
        square_out = _C_ops.square(minus_out)
424
        return square_out
姜永久 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438
    else:
        check_variable_and_dtype(
            input, "input", ['float32', 'float64'], 'square_error_cost'
        )
        check_variable_and_dtype(
            label, "label", ['float32', 'float64'], 'square_error_cost'
        )
        helper = LayerHelper('square_error_cost', **locals())
        minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='elementwise_sub',
            inputs={'X': [input], 'Y': [label]},
            outputs={'Out': [minus_out]},
        )
439

姜永久 已提交
440 441 442 443 444 445 446 447 448
        square_out = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        helper.append_op(
            type='square',
            inputs={'X': [minus_out]},
            outputs={'Out': [square_out]},
        )
        return square_out
449 450


451 452 453 454 455 456 457 458
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    """
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", A will be transformed into B
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

    So the edit distance between A and B is 3.

    The input is a Tensor, the input_length and label_length should be supported.

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.

    Parameters:
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
                                     calculating edit distance.
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]

    Returns:
492 493 494
        Tuple:
            distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
            sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')

            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)

            # print(distance)
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
            # print(sequence_num)
            # [4]

    """
    check_variable_and_dtype(input, 'input', ['int64'], 'edit_distance')
    check_variable_and_dtype(label, 'label', ['int64'], 'edit_distance')
    helper = LayerHelper("edit_distance", **locals())

    # remove some tokens from input and labels
    if ignored_tokens is not None and len(ignored_tokens) > 0:
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")

533 534 535 536 537 538
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
            attrs={"tokens": ignored_tokens},
        )
539 540
        input = erased_input

541 542 543 544 545 546
        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
            outputs={"Out": [erased_label]},
            attrs={"tokens": ignored_tokens},
        )
547 548
        label = erased_label

Z
zhiboniu 已提交
549
    if in_dygraph_mode():
550 551 552
        return _C_ops.edit_distance(
            input, label, input_length, label_length, normalized
        )
Z
zhiboniu 已提交
553

554 555 556 557 558 559 560 561
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length is not None and label_length is not None:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

    # edit distance op
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
562 563 564 565 566 567
    helper.append_op(
        type="edit_distance",
        inputs=this_inputs,
        outputs={"Out": [edit_distance_out], "SequenceNum": [sequence_num]},
        attrs={"normalized": normalized},
    )
568 569 570 571

    return edit_distance_out, sequence_num


572 573 574
def binary_cross_entropy(
    input, label, weight=None, reduction='mean', name=None
):
575
    """
学渣戊's avatar
学渣戊 已提交
576
    Measure the binary_cross_entropy loss between input predictions ``input``
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
学渣戊's avatar
学渣戊 已提交
625
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
626 627 628 629 630 631 632
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

633 634
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
635
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
636
            print(output)  # [0.65537095]
637 638 639 640 641

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
642 643 644
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
645

J
Jiabin Yang 已提交
646
    if in_dygraph_mode():
647
        out = _C_ops.bce_loss(input, label)
648
        if weight is not None:
649
            out = _C_ops.multiply(out, weight, 'axis', -1)
650 651

        if reduction == 'sum':
652
            return _C_ops.sum(out, [], None, False)
653

654
        elif reduction == 'mean':
655
            return _C_ops.mean_all(out)
656 657 658
        else:
            return out
    else:
姜永久 已提交
659 660 661 662 663 664
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'binary_cross_entropy'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'binary_cross_entropy'
        )
J
Jiabin Yang 已提交
665

姜永久 已提交
666 667 668 669 670 671 672 673 674 675 676
        sub_name = name if weight is None and reduction == 'none' else None
        helper = LayerHelper("binary_cross_entropy", name=sub_name)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]},
        )
J
Jiabin Yang 已提交
677

姜永久 已提交
678 679 680 681
        if weight is not None:
            if isinstance(weight, paddle.static.Variable):
                weight_name = name if reduction == 'none' else None
                out = paddle.multiply(out, weight, name=weight_name)
J
Jiabin Yang 已提交
682
            else:
姜永久 已提交
683 684 685 686 687 688 689 690 691 692
                raise ValueError(
                    "The weight is not a Tensor, please convert to Tensor."
                )

        if reduction == 'sum':
            return paddle.sum(out, name=name)
        elif reduction == 'mean':
            return paddle.mean(out, name=name)
        else:
            return out
693 694


695 696 697
def binary_cross_entropy_with_logits(
    logit, label, weight=None, reduction='mean', pos_weight=None, name=None
):
698
    r"""
学渣戊's avatar
学渣戊 已提交
699
    Combine the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
700 701 702 703 704 705 706

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
707
    Firstly, calculate loss function as follows:
708 709

    .. math::
710
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
711

712
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
713 714

    .. math::
715
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
716

N
Noel 已提交
717
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
718 719 720
    we reformulate the loss as follows:

    .. math::
721
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
722

学渣戊's avatar
学渣戊 已提交
723
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
724 725 726 727
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
728 729
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
学渣戊's avatar
学渣戊 已提交
758
        Tensor. If ``reduction`` is ``'none'``, the shape of output is
759 760 761 762 763 764 765
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
766

767 768
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
769
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
770
            print(output)  # [0.45618808]
771 772 773 774 775 776

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
777 778
            % reduction
        )
779

780
    if in_dygraph_mode():
781 782 783
        one = _C_ops.full(
            [1],
            float(1.0),
784
            logit.dtype,
785 786 787 788 789
            _current_expected_place(),
        )
        out = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
790
        if pos_weight is not None:
791
            log_weight = _C_ops.add(
792 793
                _C_ops.multiply(label, _C_ops.subtract(pos_weight, one)), one
            )
794
            out = _C_ops.multiply(out, log_weight)
795
        if weight is not None:
796
            out = _C_ops.multiply(out, weight)
797 798

        if reduction == "sum":
799
            return _C_ops.sum(out, [], None, False)
800
        elif reduction == "mean":
801
            return _C_ops.mean_all(out)
H
hong 已提交
802
        else:
803
            return out
姜永久 已提交
804
    else:
805
        check_variable_and_dtype(
姜永久 已提交
806 807
            logit,
            'logit',
808 809 810 811
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
        check_variable_and_dtype(
姜永久 已提交
812 813
            label,
            'label',
814 815 816
            ['float32', 'float64'],
            'binary_cross_entropy_with_logits',
        )
姜永久 已提交
817 818 819
        sigmoid_name = None
        if reduction == 'none' and pos_weight is None and weight is None:
            sigmoid_name = name
820

姜永久 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
        helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

        out = helper.create_variable_for_type_inference(dtype=logit.dtype)

        helper.append_op(
            type="sigmoid_cross_entropy_with_logits",
            inputs={"X": logit, "Label": label},
            attrs={"ignore_index": kIgnoreIndex, 'normalize': False},
            outputs={"Out": out},
        )

        one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
        if pos_weight is not None:
            check_variable_and_dtype(
                pos_weight,
                'pos_weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            log_weight = paddle.add(
                paddle.multiply(label, paddle.subtract(pos_weight, one)), one
            )
            pos_weight_name = (
                name if reduction == 'none' and weight is None else None
            )
            out = paddle.multiply(out, log_weight, name=pos_weight_name)

        if weight is not None:
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'binary_cross_entropy_with_logits',
            )
            weight_name = name if reduction == 'none' else None
            out = paddle.multiply(out, weight, name=weight_name)

        if reduction == "sum":
            return paddle.sum(out, name=name)
        elif reduction == "mean":
            return paddle.mean(out, name=name)
        return out
863 864


865 866 867 868 869 870 871 872 873 874 875
def hsigmoid_loss(
    input,
    label,
    num_classes,
    weight,
    bias=None,
    path_table=None,
    path_code=None,
    is_sparse=False,
    name=None,
):
876 877 878
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
879

880 881 882
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
883 884

    Comparing to softmax, hsigmoid can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
885 886
    represents the number of classes or the size of word dict.

887 888 889 890
    The API supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_.

    For the custom tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

L
Linjie Chen 已提交
937 938 939 940 941
            input = paddle.uniform([4, 3])
            # [[0.45424712  -0.77296764  0.82943869] # random
            #  [0.85062802  0.63303483  0.35312140] # random
            #  [0.57170701  0.16627562  0.21588242] # random
            #  [0.27610803  -0.99303514  -0.17114788]] # random
942 943 944
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
L
Linjie Chen 已提交
945 946 947 948
            # [[-0.64477652  0.24821866  -0.17456549] # random
            #  [-0.04635394  0.07473493  -0.25081766] # random
            #  [ 0.05986035  -0.12185556  0.45153677] # random
            #  [-0.66236806  0.91271877  -0.88088769]] # random
949 950

            out=F.hsigmoid_loss(input, label, num_classes, weight)
L
Linjie Chen 已提交
951 952 953 954
            # [[1.96709502]
            #  [2.40019274]
            #  [2.11009121]
            #  [1.92374969]]
955
    """
956
    if in_dygraph_mode():
957
        out, _, _ = _C_ops.hsigmoid_loss(
958 959
            input,
            label,
960 961
            weight,
            bias,
962 963 964 965 966 967
            path_table,
            path_code,
            num_classes,
            is_sparse,
            is_sparse,
        )
968
        return out
姜永久 已提交
969
    else:
970

971
        check_variable_and_dtype(
姜永久 已提交
972
            input, 'input', ['float32', 'float64'], 'hsigmoid_loss'
973
        )
姜永久 已提交
974
        check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
975
        check_variable_and_dtype(
姜永久 已提交
976
            weight, 'weight', ['float32', 'float64'], 'hsigmoid_loss'
977
        )
姜永久 已提交
978 979 980 981 982 983 984 985 986 987 988 989
        if bias is not None:
            check_variable_and_dtype(
                bias, 'bias', ['float32', 'float64'], 'hsigmoid_loss'
            )
        if path_table is not None:
            check_variable_and_dtype(
                path_table, 'path_table', ['int64'], 'hsigmoid_loss'
            )
        if path_code is not None:
            check_variable_and_dtype(
                path_code, 'path_code', ['int64'], 'hsigmoid_loss'
            )
990

姜永久 已提交
991 992 993 994 995
        attrs = {
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": is_sparse,
        }
996

姜永久 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        inputs = {
            "X": input,
            "W": weight,
            "Bias": bias,
            "PathTable": path_table,
            "PathCode": path_code,
            "Label": label,
        }

        helper = LayerHelper('hsigmoid_loss', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        pre_out = helper.create_variable_for_type_inference(input.dtype)
        outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

        helper.append_op(
            type="hierarchical_sigmoid",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
        )
        return out
1018 1019


1020
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
1021
    r"""
1022
    Calculate smooth_l1_loss. Creates a criterion that uses a squared
1023 1024 1025 1026 1027 1028
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1029
        loss(x,y) = \frac{1}{n}\sum_{i}z_i
1030 1031


1032
    where :math:`z_i` is given by:
1033 1034 1035

    .. math::

1036
        \mathop{z_i} = \left\{\begin{array}{rcl}
1037 1038 1039
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1053
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1054 1055 1056
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
1057
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1058 1059

    Returns:
1060
        Tensor, The tensor variable storing the smooth_l1_loss of input and label.
1061 1062 1063 1064 1065 1066

    Examples:
        .. code-block:: python

            import paddle

1067 1068
            input = paddle.rand([3, 3]).astype('float32')
            label = paddle.rand([3, 3]).astype('float32')
C
Chen Long 已提交
1069
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
1070
            print(output)
1071
            # [0.068004]
1072
    """
1073 1074 1075 1076 1077 1078
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'smooth_l1_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'smooth_l1_loss'
    )
1079

1080
    if in_dygraph_mode():
1081
        out, residual = _C_ops.huber_loss(input, label, delta)
1082 1083 1084
    else:
        helper = LayerHelper('huber_loss', **locals())
        residual = helper.create_variable_for_type_inference(
1085 1086
            dtype=helper.input_dtype()
        )
1087
        out = helper.create_variable_for_type_inference(
1088 1089 1090 1091 1092 1093 1094 1095
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='huber_loss',
            inputs={'X': input, 'Y': label},
            outputs={'Out': out, 'Residual': residual},
            attrs={'delta': delta},
        )
1096 1097 1098 1099

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
1100 1101
            " 'none', but received %s, which is not allowed." % reduction
        )
1102 1103 1104
    if reduction == 'none':
        return out
    elif reduction == 'mean':
1105
        return paddle.mean(out)
1106
    elif reduction == 'sum':
1107
        return paddle.sum(out)
1108 1109


1110 1111 1112
def margin_ranking_loss(
    input, other, label, margin=0.0, reduction='mean', name=None
):
1113
    r"""
1114

1115
    Calcluate the margin rank loss between the input, other and label, use the math function as follows.
1116

1117
    .. math::
1118
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
1135
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
1136 1137 1138 1139
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1140
    Returns:
1141
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1142 1143 1144 1145 1146

    Examples:

        .. code-block:: python

1147 1148
            import paddle

Z
Zhong Hui 已提交
1149 1150 1151
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
1152
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
1153
            print(loss) # [0.75]
1154
    """
1155 1156 1157
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1158 1159
            "received %s, which is not allowed." % reduction
        )
1160
    if in_dygraph_mode():
1161 1162
        out = _C_ops.subtract(other, input)
        out = _C_ops.multiply(out, label)
1163 1164
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
1165 1166
            out = _C_ops.add(out, margin)
        out = _C_ops.relu(out)
1167
        if reduction == 'sum':
1168
            return _C_ops.sum(out, [], None, False)
1169
        elif reduction == 'mean':
1170
            return _C_ops.mean_all(out)
1171
        return out
姜永久 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    else:
        helper = LayerHelper("margin_ranking_loss", **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            other, 'other', ['float32', 'float64'], 'margin_rank_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'margin_rank_loss'
        )
1183

姜永久 已提交
1184 1185 1186
        out = paddle.subtract(input, other)
        neg_label = paddle.neg(label)
        out = paddle.multiply(neg_label, out)
1187

姜永久 已提交
1188 1189 1190 1191 1192 1193
        if margin != 0.0:
            margin_var = out.block.create_var(dtype=out.dtype)
            margin_var = paddle.full(
                shape=[1], fill_value=margin, dtype=out.dtype
            )
            out = paddle.add(out, margin_var)
1194

姜永久 已提交
1195
        result_out = helper.create_variable_for_type_inference(input.dtype)
1196

姜永久 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        if reduction == 'none':
            helper.append_op(
                type="relu", inputs={"X": out}, outputs={"Out": result_out}
            )
            return result_out
        elif reduction == 'sum':
            out = paddle.nn.functional.relu(out)
            attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
            helper.append_op(
                type="reduce_sum",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs=attrs,
            )
            return result_out
        elif reduction == 'mean':
            out = paddle.nn.functional.relu(out)
            helper.append_op(
                type="mean",
                inputs={"X": out},
                outputs={"Out": result_out},
                attrs={},
            )
            return result_out
1221 1222


1223
def l1_loss(input, label, reduction='mean', name=None):
1224
    r"""
1225

1226
    Computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
1227

1228
    If `reduction` set to ``'none'``, the loss is:
1229 1230

    .. math::
1231
        Out = \lvert input - label \rvert
1232

1233
    If `reduction` set to ``'mean'``, the loss is:
1234 1235

    .. math::
1236
        Out = MEAN(\lvert input - label \rvert)
1237

1238
    If `reduction` set to ``'sum'``, the loss is:
1239 1240

    .. math::
1241
        Out = SUM(\lvert input - label \rvert)
1242

1243

1244
    Parameters:
N
Noel 已提交
1245 1246
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
1247
        reduction (str, optional): Indicate the reduction to apply to the loss,
1248
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
1249 1250 1251
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
1252 1253
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
1254

1255
    Returns:
1256
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
1257
        If `reduction` is ``'none'``, the shape of output loss is :math:`[N, *]`, the same as ``input`` .
1258
        If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
1259

1260 1261
    Examples:
        .. code-block:: python
N
Noel 已提交
1262

1263
            import paddle
1264

1265 1266
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
1267

1268
            l1_loss = paddle.nn.functional.l1_loss(input, label)
1269 1270 1271
            print(l1_loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.34999999])
1272

1273
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
1274 1275 1276 1277
            print(l1_loss)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
1278

1279
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
1280 1281 1282
            print(l1_loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.39999998])
1283

1284 1285 1286 1287
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
1288 1289
            "received %s, which is not allowed." % reduction
        )
1290

1291
    if in_dygraph_mode():
1292 1293
        unreduced = _C_ops.abs(_C_ops.subtract(input, label))

1294
        if reduction == 'mean':
1295
            return _C_ops.mean_all(unreduced)
1296
        elif reduction == 'sum':
1297
            return _C_ops.sum(unreduced, [], None, False)
1298 1299
        else:
            return unreduced
姜永久 已提交
1300 1301 1302 1303 1304 1305
    else:
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss'
1306
        )
1307

姜永久 已提交
1308 1309 1310 1311 1312 1313 1314 1315
        if reduction == 'sum':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.sum(unreduced, name=name)
        elif reduction == 'mean':
            unreduced = paddle.abs(paddle.subtract(x=input, y=label))
            return paddle.mean(unreduced, name=name)
        else:
            return paddle.abs(paddle.subtract(x=input, y=label, name=name))
1316 1317 1318 1319 1320


def nll_loss(
    input, label, weight=None, ignore_index=-100, reduction='mean', name=None
):
1321 1322
    """
    This api returns negative log likelihood.
1323 1324
    See more detail in :ref:`NLLLoss <api_paddle_nn_NLLLoss>` .

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
1336 1337
         ignore_index (int, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient. Default is -100.
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
1352

1353 1354 1355 1356
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

1357 1358 1359 1360 1361
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
1362
                log_out = log_softmax(input)
1363
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
1364
                result = nll_loss(log_out, label)
1365
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
1366 1367 1368 1369
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
1370 1371
            "'none', but received %s, which is not allowed." % reduction
        )
1372 1373 1374

    input_shape = list(input.shape)
    input_dims = len(input_shape)
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    label_shape = list(label.shape)
    label_dims = len(label_shape)

    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            "Expected input_dims - 1 = label_dims or input_dims == label_dims\
             (got input_dims{}, label_dims{})".format(
                input_dims, label_dims
            )
        )

1386
    if input_dims < 2:
1387
        raise ValueError(
1388 1389
            'Expected 2 or more dimensions (got {})'.format(input_dims)
        )
1390 1391 1392 1393 1394 1395 1396 1397

    if input_shape[1] < 1:
        raise ValueError(
            "Expected 1 or more classess (got num classes{})".format(
                input_shape[1]
            )
        )

1398 1399
    n = input_shape[0]
    c = input_shape[1]
Z
zyfncg 已提交
1400 1401
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
1402 1403
            input = _C_ops.reshape(input, [n, c, 1, -1])
            label = _C_ops.reshape(label, [n, 1, -1])
Z
zyfncg 已提交
1404
            out_shape = [n] + input_shape[2:]
1405 1406 1407
        out, total_weight = _C_ops.nll_loss(
            input, label, weight, ignore_index, reduction
        )
Z
zyfncg 已提交
1408
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
1409
            out = _C_ops.reshape(out, out_shape)
Z
zyfncg 已提交
1410
        return out
姜永久 已提交
1411 1412 1413
    else:
        helper = LayerHelper('nll_loss', **locals())

1414
        if input_dims != 2 and input_dims != 4:
姜永久 已提交
1415 1416
            input = reshape(input, shape=[n, c, 1, -1])
            label = reshape(label, shape=[n, 1, -1])
1417
            out_shape = [n] + input_shape[2:]
H
hong 已提交
1418

姜永久 已提交
1419 1420
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss'
1421
        )
姜永久 已提交
1422 1423 1424 1425 1426 1427
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')
        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': reduction, 'ignore_index': ignore_index}
        if weight is not None:
            if isinstance(weight, Variable):
                inputs['Weight'] = weight
1428

姜永久 已提交
1429 1430 1431 1432 1433
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = helper.create_variable_for_type_inference(
            dtype=input.dtype
        )
        outputs = {'Out': out, 'Total_weight': total_weight}
1434

姜永久 已提交
1435 1436 1437 1438 1439
        helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs
        )
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out = reshape(out, shape=out_shape)
1440

姜永久 已提交
1441
        return out
1442 1443


1444
def kl_div(input, label, reduction='mean', name=None):
1445
    r"""
1446
    Calculate the Kullback-Leibler divergence loss
1447 1448 1449 1450 1451 1452 1453
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

1454
    Here :math:`x` is input and :math:`y` is label.
1455

1456
    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.
1457

1458
    If `reduction` is ``'mean'``, the output loss is the shape of [1], and the output is the average of all losses.
1459

1460
    If `reduction` is ``'sum'``, the output loss is the shape of [1], and the output is the sum of all losses.
1461

1462
    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.
1463 1464

    Args:
1465
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
1466
            any number of additional dimensions. It's data type should be float32, float64.
1467
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
1468 1469 1470 1471 1472 1473 1474
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1475
        name(str, optional): Name for the operation (optional, default is None). For more information,
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1486

1487
            shape = (5, 20)
1488 1489
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1490

L
LielinJiang 已提交
1491
            # 'batchmean' reduction, loss shape will be [1]
1492
            pred_loss = F.kl_div(x, target, reduction='batchmean')
L
LielinJiang 已提交
1493
            # shape=[1]
1494

1495
            # 'mean' reduction, loss shape will be [1]
1496
            pred_loss = F.kl_div(x, target, reduction='mean')
1497 1498 1499
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
1500
            pred_loss = F.kl_div(x, target, reduction='sum')
1501 1502 1503
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
1504
            pred_loss = F.kl_div(x, target, reduction='none')
1505 1506 1507
            # shape=[5, 20]

    """
L
LielinJiang 已提交
1508
    # ugly type promotion
1509 1510 1511 1512
    if (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float32'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float64'
    ):
1513
        input = paddle.cast(input, 'float64')
1514 1515 1516 1517
    elif (
        fluid.data_feeder.convert_dtype(input.dtype) == 'float64'
        and fluid.data_feeder.convert_dtype(label.dtype) == 'float32'
    ):
1518
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
1519

1520
    if in_dygraph_mode():
1521
        out = _C_ops.kldiv_loss(input, label, 'none')
1522 1523 1524 1525 1526 1527 1528 1529 1530
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
        return out
姜永久 已提交
1531 1532
    else:
        helper = LayerHelper('kl_div', **locals())
1533

姜永久 已提交
1534 1535 1536 1537 1538 1539 1540
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'kl_div'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'kl_div'
        )
        fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')
1541

姜永久 已提交
1542 1543 1544 1545 1546 1547 1548
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='kldiv_loss',
            inputs={'X': input, 'Target': label},
            outputs={'Loss': loss},
            attrs={'reduction': 'none'},
        )
1549

姜永久 已提交
1550 1551 1552 1553 1554 1555 1556 1557
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        elif reduction == 'batchmean':
            batch_size = paddle.shape(input)[0]
            loss = paddle.sum(loss) / batch_size
        return loss
1558 1559


1560
def mse_loss(input, label, reduction='mean', name=None):
1561
    r"""
1562
    Accept input predications and label and returns the mean square error.
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
1592
        Tensor, The tensor tensor storing the mean square error difference of input and label.
1593

1594 1595 1596
    Examples:

        .. code-block:: python
1597

1598 1599
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
1600 1601
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
1602
            output = mse_loss(input, label)
B
Bai Yifan 已提交
1603
            print(output)
1604 1605 1606 1607 1608 1609 1610
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
1611 1612
            "but received {}.".format(reduction)
        )
1613

Z
zhiboniu 已提交
1614
    if not in_dynamic_mode():
1615 1616 1617 1618 1619 1620
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss'
        )
1621 1622

    if reduction == 'none':
1623
        return paddle.square(paddle.subtract(input, label), name=name)
1624
    elif reduction == 'mean':
1625 1626 1627
        return paddle.mean(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1628
    else:
1629 1630 1631
        return paddle.sum(
            paddle.square(paddle.subtract(input, label)), name=name
        )
1632 1633


1634 1635 1636 1637 1638 1639 1640 1641 1642
def ctc_loss(
    log_probs,
    labels,
    input_lengths,
    label_lengths,
    blank=0,
    reduction='mean',
    norm_by_times=False,
):
1643 1644
    """

1645 1646 1647
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1648 1649 1650
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1651
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1652 1653 1654
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1655 1656 1657
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default: 0.
        reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default: ``'mean'``.
        norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
H
Hui Zhang 已提交
1658

1659 1660
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1679
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1692 1693 1694 1695 1696 1697
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]],
                                    dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                                    [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1698

1699 1700 1701 1702
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1703
                reduction='none')
1704 1705 1706
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1707

1708 1709 1710 1711 1712
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1713 1714 1715
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1716 1717 1718

    """

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    def warpctc(
        input,
        label,
        blank=0,
        norm_by_times=False,
        input_length=None,
        label_length=None,
    ):
        if in_dygraph_mode():
            if input_length is None or label_length is None:
                raise ValueError(
                    "input_length and label_length must not be None in dygraph mode!"
                )
            loss_out = _C_ops.warpctc(
                input, label, input_length, label_length, blank, norm_by_times
            )
            return loss_out
姜永久 已提交
1736 1737
        else:
            helper = LayerHelper('warpctc', **locals())
1738
            check_variable_and_dtype(
姜永久 已提交
1739
                input, 'input', ['float32', 'float64'], "warpctc"
1740
            )
姜永久 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
            check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
            this_inputs = {'Logits': [input], 'Label': [label]}
            if input_length is not None and label_length is not None:
                check_variable_and_dtype(
                    input_length, 'LogitsLength', ['int64'], "warpctc"
                )
                check_variable_and_dtype(
                    label_length, 'LabelLength', ['int64'], "warpctc"
                )
                this_inputs['LogitsLength'] = [input_length]
                this_inputs['LabelLength'] = [label_length]
1752

姜永久 已提交
1753 1754 1755 1756 1757 1758
            loss_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
            grad_out = helper.create_variable_for_type_inference(
                dtype=input.dtype
            )
1759

姜永久 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
            helper.append_op(
                type='warpctc',
                inputs=this_inputs,
                outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
                attrs={
                    'blank': blank,
                    'norm_by_times': norm_by_times,
                },
            )
            return loss_out
1770 1771

    loss_out = warpctc(
1772 1773
        log_probs, labels, blank, norm_by_times, input_lengths, label_lengths
    )
1774

Z
zhiboniu 已提交
1775
    loss_out = paddle.squeeze(loss_out, [-1])
1776 1777
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1778
        loss_out = paddle.mean(loss_out / label_lengths)
1779 1780 1781
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out
H
Hui Zhang 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905


def rnnt_loss(
    input,
    label,
    input_lengths,
    label_lengths,
    blank=0,
    fastemit_lambda=0.001,
    reduction='mean',
    name=None,
):
    """
    An operator integrating the open source Warp-Transducer library (https://github.com/b-flo/warp-transducer.git)
    to compute Sequence Transduction with Recurrent Neural Networks (RNN-T) loss.

    Parameters:
        input (Tensor): The logprobs sequence with padding, which is a 4-D Tensor. The tensor shape is [B, Tmax, Umax, D], where Tmax, is the longest length of input logit sequence. The data type should be float32 or float64.
        label (Tensor): The ground truth sequence with padding, which must be a 2-D Tensor. The tensor shape is [B, Umax], where Umax is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of RNN-T loss, which is in the half-opened interval [0, B). The data type must be int32. Default is 0.
        fastemit_lambda (float, default 0.001): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output will be sum of loss and be divided by the batch_size; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``logprobs``.

    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle
            import functools

            fn = functools.partial(F.rnnt_loss, reduction='sum', fastemit_lambda=0.0, blank=0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        [4.49566677])
    """

    def warprnnt(
        input, label, input_length, label_length, blank=0, fastemit_lambda=0.001
    ):
        if in_dygraph_mode():
            loss_out = _C_ops.warprnnt(
                input,
                label,
                input_length,
                label_length,
                blank,
                fastemit_lambda,
            )
            return loss_out
        helper = LayerHelper('warprnnt', **locals())
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "warprnnt"
        )
        check_variable_and_dtype(label, 'label', ['int32'], "warprnnt")
        check_variable_and_dtype(
            input_length, 'input_lengths', ['int32'], "warprnnt"
        )
        check_variable_and_dtype(
            label_length, 'label_lengths', ['int32'], "warprnnt"
        )
        this_inputs = {
            'input': [input],
            'label': [label],
            'input_lengths': [input_length],
            'label_lengths': [label_length],
        }

        loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
        grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type='warprnnt',
            inputs=this_inputs,
            outputs={'warprnntgrad': [grad_out], 'loss': [loss_out]},
            attrs={
                'blank': blank,
                'fastemit_lambda': fastemit_lambda,
            },
        )
        return loss_out

    B = input.shape[0]

    # NOTE manually done log_softmax for CPU version,
    # log_softmax is computed within GPU version.

    # (B,)
    loss_out = warprnnt(
        input, label, input_lengths, label_lengths, blank, fastemit_lambda
    )

    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
        loss_out = paddle.sum(loss_out, name=name) / B
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out, name=name)
    return loss_out
1906 1907


1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
def margin_cross_entropy(
    logits,
    label,
    margin1=1.0,
    margin2=0.5,
    margin3=0.0,
    scale=64.0,
    group=None,
    return_softmax=False,
    reduction='mean',
):
1919
    r"""
1920 1921
    .. math::

1922
        L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
1923

1924
    where the :math:`\theta_{y_i}` is the angle between the feature :math:`x` and
1925 1926 1927 1928
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
1929 1930 1931 1932
        The API supports single GPU and multi GPU, and don't supports CPU.
        For data parallel mode, set ``group=False``.
        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.
        And logits.shape[-1] can be different at each rank.
1933 1934

    Args:
G
Guoxia Wang 已提交
1935
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1936
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1937 1938 1939 1940 1941
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1942
        group (Group, optional): The group instance return by paddle.distributed.new_group
1943 1944
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1945 1946 1947 1948 1949 1950 1951 1952
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
1953 1954 1955 1956 1957 1958
        Tensor|tuple[Tensor, Tensor], return the cross entropy loss if
            `return_softmax` is False, otherwise the tuple (loss, softmax),
            softmax is shard_softmax when using model parallel, otherwise
            softmax is in the same shape with input logits. If
            ``reduction == None``, the shape of loss is ``[N, 1]``, otherwise
            the shape is ``[1]``.
1959 1960 1961 1962

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1963
        :name: code-example1
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
2012
        :name: code-example2
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

2059
        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
2103
    if not (group is False or group is None or hasattr(group, 'is_member')):
2104 2105
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2106 2107 2108 2109
             (got group: {})'.format(
                group
            )
        )
2110 2111 2112
        return

    if hasattr(group, 'is_member') and not group.is_member():
2113 2114
        return

2115
    ring_id = 0
2116 2117
    rank = 0
    nranks = 1
2118
    if group is not False:
2119 2120 2121 2122
        ring_id = 0 if group is None else group.id
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2123 2124 2125 2126 2127
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2128
            nranks = parallel_env.world_size if group is None else group.nranks
2129 2130 2131 2132 2133

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
2134
            'Expected input_dims - 1 = label_dims or input_dims == label_dims\
2135
             (got input_dims{}, label_dims{})'.format(
2136 2137 2138
                input_dims, label_dims
            )
        )
2139 2140 2141
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

2142
    if in_dygraph_mode():
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
        softmax, loss = _C_ops.margin_cross_entropy(
            logits,
            label,
            return_softmax,
            ring_id,
            rank,
            nranks,
            margin1,
            margin2,
            margin3,
            scale,
        )
2155 2156 2157 2158 2159 2160 2161 2162
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax
姜永久 已提交
2163 2164 2165 2166 2167 2168 2169
    else:
        op_type = 'margin_cross_entropy'
        helper = LayerHelper(op_type, **locals())
        softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
        loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

        check_variable_and_dtype(
2170
            logits,
姜永久 已提交
2171 2172 2173
            'logits',
            ['float16', 'float32', 'float64'],
            'margin_cross_entropy',
2174
        )
姜永久 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'margin_cross_entropy'
        )

        helper.append_op(
            type=op_type,
            inputs={'Logits': logits, 'Label': label},
            outputs={'Softmax': softmax, 'Loss': loss},
            attrs={
                'return_softmax': return_softmax,
                'ring_id': ring_id,
                'rank': rank,
                'nranks': nranks,
                'margin1': margin1,
                'margin2': margin2,
                'margin3': margin3,
                'scale': scale,
            },
        )

2195 2196 2197 2198
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
姜永久 已提交
2199

2200 2201 2202 2203 2204 2205
        if not return_softmax:
            return loss
        else:
            return loss, softmax


2206 2207 2208 2209
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'
    ),
)
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=-100,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
2224
    r"""
2225 2226
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
2227 2228 2229 2230 2231 2232
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

2233 2234 2235
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::
        \\loss_j=-\text{logits}_{label_j} +\log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::
        \\loss_j= -\sum_{i=0}^{K}\text{label}_i\left(\text{logits}_i - \log\left(\sum_{i=0}^{K}\exp(\text{logits}_i)\right)\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::
        \\max_j&=\max_{i=0}^{K}{\text{logits}_i} \\
                log\_max\_sum_j &= \log\sum_{i=0}^{K}\exp(logits_i - max_j)\\
                softmax_j &= \exp(logits_j - max_j - {log\_max\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
2262 2263 2264
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
2265 2266 2267 2268 2269
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
2270
                                      if :attr:`soft_label` is set to :attr:`False`.
2271 2272 2273
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
2274 2275 2276
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
2277 2278 2279 2280 2281
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
2282
        axis (int, optional): The index of dimension to perform softmax calculations. It
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

            import paddle
2298 2299 2300 2301 2302

            logits = paddle.to_tensor([0.4, 0.6, 0.9], dtype="float32")
            label = paddle.to_tensor([1], dtype="int64")

            out = paddle.nn.functional.softmax_with_cross_entropy(logits=logits, label=label)
2303
            print(out)
2304 2305
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.15328646])
2306
    """
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
    return fluid_softmax_with_cross_entropy(
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )


def cross_entropy(
    input,
    label,
    weight=None,
    ignore_index=-100,
    reduction='mean',
    soft_label=False,
    axis=-1,
    use_softmax=True,
    name=None,
):
2329
    r"""
2330

2331
    By default, the cross entropy loss function is implemented using softmax. This function
2332 2333
    combines the calculation of the softmax operation and the cross entropy loss function
    to provide a more numerically stable computing.
2334

2335
    Calculate the cross entropy loss function without softmax when use_softmax=False.
2336

2337
    By default, calculate the mean of the result, and you can also affect
2338
    the default behavior by using the reduction parameter. Please refer to the part of
2339
    parameters for details.
2340

2341
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
2342
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
2343
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
2344

2345
    The calculation includes the following two steps.
2346

2347
    - **1.softmax cross entropy**
2348

2349
        1. Hard label (each sample can only be assigned into one category)
2350

2351
        1.1. when use_softmax=True
2352

2353 2354
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
2355

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
2397
                \\loss_j=loss_j*weight[label_j]
2398

2399

2400 2401 2402 2403 2404 2405 2406
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

2407
            2.1 if the ``reduction`` parameter is ``none``
2408 2409 2410

                Return the previous result directly

2411
            2.2 if the ``reduction`` parameter is ``sum``
2412 2413 2414 2415 2416 2417

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

2418 2419
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
2420

2421
            2.3.1. If the  ``weight``  parameter is ``None``
2422 2423 2424

                   Return the average value of the previous results

2425
            .. math::
2426 2427 2428 2429 2430 2431 2432 2433
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

2434
            .. math::
2435
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2436 2437 2438

            2. Soft labels (soft_label = True)

2439
            .. math::
2440
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
2441 2442


2443
    Parameters:
2444
        input (Tensor): the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
2445

2446
            Note:
2447
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the output of softmax operator, which will produce incorrect results.
2448
                2. when use_softmax=False, it expects the output of softmax operator.
2449

2450
        label (Tensor):
2451 2452 2453 2454
            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

2455
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
2456 2457
            and the sum of the labels for each sample should be 1.

2458
        weight (Tensor, optional): a manual rescaling weight given to each class.
2459
            If given, has to be a Tensor of size C and the data type is float32, float64.
2460
            Default is ``'None'`` .
2461
        ignore_index (int64, optional): Specifies a target value that is ignored
2462 2463
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
2464
            Default is ``-100`` .
2465
        reduction (str, optional): Indicate how to average the loss by batch_size,
2466 2467
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
2468
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
2469 2470
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
2471 2472
        soft_label (bool, optional): Indicate whether label is soft. Default is ``False``.
        axis (int, optional):The index of dimension to perform softmax calculations.
2473 2474
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
            number of dimensions of input :attr:`input`.
2475
            Default is ``-1`` .
2476
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
2477
            Default is ``True``.
2478
        name (str, optional): The name of the operator. Default is ``None`` .
2479
            For more information, please refer to :ref:`api_guide_Name` .
2480 2481 2482

    Returns:

2483 2484
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
2485

2486
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
2487

2488
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
2489

2490
        1. If soft_label = False, the dimension of return value is the same with ``label`` .
C
Chen Long 已提交
2491

2492
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2493

2494
    Examples:
2495
        .. code-block:: python
2496 2497

            # hard labels
2498 2499 2500 2501 2502
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
2503
            input =  paddle.rand([N, C], dtype='float64')
2504
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
2505 2506
            weight = paddle.rand([C], dtype='float64')

2507 2508 2509
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
2510 2511 2512 2513 2514
                                        input,
                                        label)
            print(dy_ret)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [5.34043430])
2515 2516

        .. code-block:: python
2517 2518

            # soft labels
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
2532 2533 2534 2535 2536 2537 2538 2539 2540
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [1.11043464])
C
Chen Long 已提交
2541

2542 2543 2544 2545
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
2546 2547
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2548 2549
            % reduction
        )
2550
    if ignore_index > 0 and soft_label:
2551 2552
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
2553 2554 2555
            "should be '-100', but received %s, which is not allowed."
            % ignore_index
        )
2556

2557
    input_dims = len(list(input.shape))
2558 2559 2560
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

2561 2562 2563
    label_dims = len(list(label.shape))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
2564

2565
    if in_dygraph_mode():
2566
        if not soft_label:
2567 2568 2569
            valid_label = (
                paddle.cast(label != ignore_index, dtype=label.dtype) * label
            )
F
fwenguang 已提交
2570
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
2571
            if not soft_label:
2572
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
                    input,
                    valid_label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2586
            else:
2587
                _, _, out = _legacy_C_ops.softmax_with_cross_entropy(
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
                    input,
                    label,
                    'soft_label',
                    soft_label,
                    'ignore_index',
                    ignore_index,
                    'numeric_stable_mode',
                    True,
                    'axis',
                    axis,
                    'use_softmax',
                    use_softmax,
                )
2601
        else:
2602 2603 2604
            _, out = _C_ops.cross_entropy_with_softmax(
                input, label, soft_label, use_softmax, True, ignore_index, axis
            )
2605 2606 2607 2608

        if weight is not None:

            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
2609
            if soft_label:
2610 2611 2612 2613
                # chajchaj:
                # weight's shape is C, where C is class num.
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2614 2615 2616 2617 2618 2619
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
2620 2621 2622 2623
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

2624
                out = _C_ops.multiply(out, weight_gather_reshape)
2625 2626 2627 2628 2629
            else:
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

                ignore_weight_mask = paddle.cast(
                    (label != ignore_index), out.dtype
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
2642
                    # TODO: Temporarily use squeeze instead of squeeze_
2643 2644 2645
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
2646
                if axis != -1 and axis != valid_label.ndim - 1:
2647 2648 2649 2650 2651 2652 2653 2654 2655
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
2656
                    weight_gather = _C_ops.gather_nd(
2657 2658
                        weight, valid_label.transpose(temp_perm)
                    )
2659
                else:
2660
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
2661 2662 2663
                weight_gather = _C_ops.multiply(
                    weight_gather, ignore_weight_mask
                )
2664
                input_shape = list(label.shape)
2665 2666 2667
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
2668
                out = paddle.cast(out, weight_gather_reshape.dtype)
2669
                out = _C_ops.multiply(out, weight_gather_reshape)
2670 2671 2672 2673 2674

        if reduction == "sum":
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
2675
            return _C_ops.sum(out, [], None, False)
2676 2677 2678 2679 2680 2681 2682
        elif reduction == "mean":
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
H
huangjun12 已提交
2683 2684 2685
            is_ignore = label == ignore_index
            mask = ~is_ignore
            if paddle.count_nonzero(is_ignore) > 0:  # ignore label
2686
                out_sum = _C_ops.sum(out, [], None, False)
2687 2688 2689 2690 2691
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
                if weight is None:
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
2692
                    count = _C_ops.sum(mask, [], None, False)
2693 2694 2695
                    ret = out_sum / (count + (count == 0.0))
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
2696 2697 2698
                    weight_ignored = _C_ops.multiply(
                        mask, weight_gather_reshape
                    )
2699
                    weight_sum = _C_ops.sum(weight_ignored, [], None, False)
2700 2701 2702
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
                return ret
            elif weight is not None:
2703
                out_sum = _C_ops.sum(out, [], None, False)
2704 2705 2706
                total_weight = _C_ops.sum(
                    weight_gather_reshape, [], None, False
                )
2707 2708
                return out_sum / (total_weight + (total_weight == 0.0))
            else:
2709
                return _C_ops.mean_all(out)
2710 2711 2712 2713 2714 2715

        else:
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
            return out

姜永久 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
            'softmax_cross_entropy',
        )
        attrs = {
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': True,
            'axis': axis,
            'use_softmax': use_softmax,
        }
        helper = LayerHelper('softmax_with_cross_entropy', **locals())
        softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        outputs = {'Softmax': softmax, 'Loss': out}
2741
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
姜永久 已提交
2742 2743
            backprop = helper.create_variable_for_type_inference(
                dtype=input.dtype
2744
            )
姜永久 已提交
2745 2746 2747 2748 2749 2750 2751
            outputs['Backprop'] = backprop
        helper.append_op(
            type='softmax_with_cross_entropy',
            inputs={'Logits': input, 'Label': label},
            outputs=outputs,
            attrs=attrs,
        )
2752

2753
        if weight is not None:
姜永久 已提交
2754 2755 2756 2757 2758 2759 2760
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'softmax_cross_entropy',
            )
            weight_name = name if reduction == 'none' else None
2761
            if soft_label:
2762
                # chajchaj:
姜永久 已提交
2763
                # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
H
HydrogenSulfate 已提交
2764
                # weight's shape is C, where C is class num.
2765 2766
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
2767 2768 2769 2770 2771 2772
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True,
                )
姜永久 已提交
2773

2774 2775 2776 2777
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
            else:
2778 2779 2780 2781
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
2782 2783 2784 2785 2786
                        "when weight is provided".format(
                            input.shape[axis], weight.shape[-1]
                        )
                    )

姜永久 已提交
2787 2788 2789
                valid_label = paddle.multiply(
                    paddle.cast(label != ignore_index, dtype=label.dtype), label
                )
2790
                ignore_weight_mask = paddle.cast(
姜永久 已提交
2791
                    (label != ignore_index), input.dtype
2792 2793 2794 2795 2796 2797 2798 2799
                )
                if (
                    ignore_weight_mask.ndim > 1
                    and ignore_weight_mask.shape[axis] == 1
                ):
                    ignore_weight_mask = paddle.squeeze(
                        ignore_weight_mask, axis
                    )
H
HydrogenSulfate 已提交
2800
                if axis != -1 and axis != valid_label.ndim - 1:
2801 2802 2803 2804 2805 2806 2807 2808 2809
                    temp_perm = (
                        list(range(axis % valid_label.ndim))
                        + list(
                            range(
                                (axis % valid_label.ndim + 1), valid_label.ndim
                            )
                        )
                        + [axis % valid_label.ndim]
                    )
姜永久 已提交
2810 2811
                    weight_gather = paddle.gather_nd(
                        weight, paddle.transpose(valid_label, temp_perm)
2812
                    )
2813
                else:
姜永久 已提交
2814 2815
                    weight_gather = paddle.gather_nd(weight, valid_label)
                weight_gather = paddle.multiply(
2816 2817
                    weight_gather, ignore_weight_mask
                )
姜永久 已提交
2818

2819
                input_shape = list(label.shape)
2820 2821 2822
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape
                )
姜永久 已提交
2823
            out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
2824

2825
        if reduction == "sum":
姜永久 已提交
2826
            return paddle.sum(out, name=name)
2827
        elif reduction == "mean":
姜永久 已提交
2828 2829
            if ignore_index >= 0:
                out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
2830 2831 2832
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
姜永久 已提交
2833
                mask = label != ignore_index
2834
                if weight is None:
2835
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
姜永久 已提交
2836
                    count = paddle.sum(mask, name=name)
2837
                    ret = out_sum / (count + (count == 0.0))
2838 2839
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
姜永久 已提交
2840
                    weight_ignored = paddle.multiply(
2841 2842
                        mask, weight_gather_reshape
                    )
姜永久 已提交
2843
                    weight_sum = paddle.sum(weight_ignored, name=name)
2844
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
2845 2846
                return ret
            elif weight is not None:
姜永久 已提交
2847 2848
                out_sum = paddle.sum(out, name=name)
                total_weight = paddle.sum(weight_gather_reshape)
2849
                return out_sum / (total_weight + (total_weight == 0.0))
2850
            else:
姜永久 已提交
2851 2852
                return paddle.mean(out, name=name)

2853
        else:
2854 2855 2856
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)

姜永久 已提交
2857
            return out
2858 2859


2860 2861 2862 2863 2864 2865 2866 2867 2868
def sigmoid_focal_loss(
    logit,
    label,
    normalizer=None,
    alpha=0.25,
    gamma=2.0,
    reduction='sum',
    name=None,
):
2869
    r"""
2870 2871 2872 2873 2874 2875
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

2876
    This operator measures focal loss function as follows:
2877 2878

    .. math::
2879
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
2880

2881
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`.
2882 2883 2884 2885 2886

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
2887
           Out = \frac{Out}{normalizer}
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
2904 2905
            a 1-D Tensor with shape `[1, ]` or 0-D Tensor with shape `[]`. The data type
            is float32, float64. For object detection task, it is the number of positive samples.
2906 2907
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
2908
            it should be between 0 and 1.  Default value is set to 0.25.
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
2933
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
2934
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
2935
            print(output)  # [0.65782464]
2936 2937 2938 2939 2940 2941

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
2942 2943
            % reduction
        )
2944 2945

    if normalizer is not None:
2946 2947 2948 2949 2950 2951
        check_variable_and_dtype(
            normalizer,
            'normalizer',
            ['float32', 'float64'],
            'sigmoid_focal_loss',
        )
2952 2953 2954 2955
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
2956
                "Expected zero or one dimension of normalizer in sigmoid_focal_loss but got {}.".format(
2957 2958 2959
                    normalizer_dims
                )
            )
2960

2961 2962
    if in_dygraph_mode():
        place = _current_expected_place()
2963
        one = _C_ops.full(logit.shape, float(1.0), logit.dtype, place)
2964

2965 2966 2967
        loss = _C_ops.sigmoid_cross_entropy_with_logits(
            logit, label, False, -100
        )
2968

2969
        pred = _C_ops.sigmoid(logit)
2970

2971 2972
        p_t = _C_ops.add(
            _C_ops.multiply(pred, label),
2973 2974 2975 2976
            _C_ops.multiply(
                _C_ops.subtract(one, pred), _C_ops.subtract(one, label)
            ),
        )
2977 2978

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
2979 2980
        alpha_t = _C_ops.add(
            _C_ops.multiply(alpha, label),
2981 2982 2983 2984
            _C_ops.multiply(
                _C_ops.subtract(one, alpha), _C_ops.subtract(one, label)
            ),
        )
2985
        loss = _C_ops.multiply(alpha_t, loss)
2986 2987

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
2988 2989
        gamma_t = _C_ops.pow(_C_ops.subtract(one, p_t), gamma)
        loss = _C_ops.multiply(gamma_t, loss)
2990 2991

        if normalizer is not None:
2992
            loss = _C_ops.divide(loss, normalizer)
2993 2994

        if reduction == "sum":
2995
            return _C_ops.sum(loss, [], None, False)
2996
        elif reduction == "mean":
2997
            return _C_ops.mean_all(loss)
2998 2999 3000

        return loss

姜永久 已提交
3001 3002 3003
    else:
        check_variable_and_dtype(
            logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss'
3004
        )
姜永久 已提交
3005 3006
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss'
3007
        )
3008

姜永久 已提交
3009 3010 3011 3012 3013
        bce_name = None
        if reduction == 'none' and normalizer is None:
            bce_name = name
        loss = paddle.nn.functional.binary_cross_entropy_with_logits(
            logit, label, reduction='none', name=bce_name
3014
        )
3015

姜永久 已提交
3016 3017
        pred = paddle.nn.functional.sigmoid(logit)
        p_t = pred * label + (1 - pred) * (1 - label)
3018

姜永久 已提交
3019 3020
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = paddle.multiply(alpha_t, loss)
3021

姜永久 已提交
3022 3023
        gamma_t = paddle.pow((1 - p_t), gamma)
        loss = paddle.multiply(gamma_t, loss)
3024

姜永久 已提交
3025 3026 3027
        if normalizer is not None:
            normalizer_name = name if reduction == 'none' else None
            loss = paddle.divide(loss, normalizer, name=normalizer_name)
3028

姜永久 已提交
3029 3030 3031 3032
        if reduction == 'mean':
            loss = paddle.mean(loss, name=name)
        elif reduction == 'sum':
            loss = paddle.sum(loss, name=name)
3033

姜永久 已提交
3034
        return loss
3035 3036


3037 3038 3039
def multi_label_soft_margin_loss(
    input, label, weight=None, reduction="mean", name=None
):
Y
yangguohao 已提交
3040
    r"""
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
    Calculate a multi-class multi-classification
    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
    and output :math:`y` (which is a 2D `Tensor` of target class indices).
    For each sample in the mini-batch:

    .. math::
        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
    :math:`y` and :math:`x` must have the same size.
Y
yangguohao 已提交
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input.
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of size C and the data type is float32, float64.
                Default is ``'None'`` .
        reduction (str, optional): Indicate how to average the loss by batch_size,
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
3069

3070 3071 3072 3073 3074
    Shape:
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
        label: N-D Tensor, same shape as the input.
        weight:N-D Tensor, the shape is [N,1]
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Y
yangguohao 已提交
3075

3076 3077
    Returns:
        Tensor, The tensor variable storing the multi_label_soft_margin_loss of input and label.
Y
yangguohao 已提交
3078

3079 3080
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
3081

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
            import paddle
            import paddle.nn.functional as F
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
            loss = F.multi_label_soft_margin_loss(input, label, reduction='none')
            print(loss)
            # Tensor([3.49625897, 0.71111226, 0.43989015])
            loss = F.multi_label_soft_margin_loss(input, label, reduction='mean')
            print(loss)
            # Tensor([1.54908717])
Y
yangguohao 已提交
3093 3094 3095 3096
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_label_soft_margin_loss' should be 'sum', 'mean' or 'none', "
3097 3098
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3099 3100

    if not (input.shape == label.shape):
3101 3102 3103 3104
        raise ValueError(
            "The input and label should have same dimension,"
            "but received {}!={}".format(input.shape, label.shape)
        )
Y
yangguohao 已提交
3105

姜永久 已提交
3106
    if not in_dygraph_mode():
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
        check_variable_and_dtype(
            label,
            'label',
            ['float32', 'float64'],
            'multilabel_soft_margin_loss',
        )
Y
yangguohao 已提交
3119

3120 3121 3122 3123
    loss = -(
        label * paddle.nn.functional.log_sigmoid(input)
        + (1 - label) * paddle.nn.functional.log_sigmoid(-input)
    )
Y
yangguohao 已提交
3124 3125

    if weight is not None:
姜永久 已提交
3126
        if not in_dygraph_mode():
3127 3128 3129 3130 3131 3132
            check_variable_and_dtype(
                weight,
                'weight',
                ['float32', 'float64'],
                'multilabel_soft_margin_loss',
            )
Y
yangguohao 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
        loss = loss * weight

    loss = loss.mean(axis=-1)  # only return N loss values

    if reduction == "none":
        return loss
    elif reduction == "mean":
        return paddle.mean(loss)
    elif reduction == "sum":
        return paddle.sum(loss)


3145 3146
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
3147
    Calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
3222 3223
            "but received {}.".format(reduction)
        )
3224

姜永久 已提交
3225
    if not in_dygraph_mode():
3226 3227 3228 3229 3230 3231
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'hinge_embedding_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'hinge_embedding_loss'
        )
3232 3233

    zero_ = paddle.zeros([1], dtype=input.dtype)
3234 3235 3236
    loss = paddle.where(label == 1.0, input, zero_) + paddle.where(
        label == -1.0, paddle.nn.functional.relu(margin - input), zero_
    )
3237 3238 3239 3240 3241 3242 3243

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3244 3245


3246 3247 3248
def cosine_embedding_loss(
    input1, input2, label, margin=0, reduction='mean', name=None
):
3249
    r"""
3250
    Compute the cosine embedding loss of Tensor ``input1``, ``input2`` and ``label`` as follows.
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

3266 3267
    Parameters:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3268
                         Available dtypes are float32, float64.
3269
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
3270
                         Available dtypes are float32, float64.
3271
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
                         Available dtypes are int32, int64, float32, float64.
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
                         :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
                         default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
                         ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
                         ``'mean'``: the sum of the output will be divided by the number of elements in the output
                         ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
                         For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean')
            print(output)  # [0.21155193]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum')
            print(output)  # [0.42310387]

            output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none')
            print(output)  # [0.42310387, 0.        ]

    """
    if len(label.shape) != 1:
        raise ValueError(
3309 3310
            "1D target tensor expected, multi-target not supported"
        )
3311 3312 3313 3314

    if input1.shape != input2.shape:
        raise ValueError(
            "the shape of input tensor 1 should be equal to input tensor 2, but found inputs with "
3315 3316
            "different sizes"
        )
3317 3318 3319 3320 3321 3322 3323 3324

    if len(input1.shape) > 2:
        raise ValueError(
            "1D target tensor expects 1D or 2D input tensors, but found inputs with different sizes"
        )

    if input1.dtype not in [paddle.float32, paddle.float64]:
        raise ValueError(
3325 3326
            "The data type of input Variable must be 'float32' or 'float64'"
        )
3327
    if label.dtype not in [
3328 3329 3330 3331
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
    ]:
        raise ValueError(
            "The data type of label Variable must be 'int32', 'int64', 'float32', 'float64'"
        )

    prod_sum = (input1 * input2).sum(axis=-1)
    mag_square1 = paddle.square(input1).sum(axis=-1) + 10e-12
    mag_square2 = paddle.square(input2).sum(axis=-1) + 10e-12
    denom = paddle.sqrt(mag_square1 * mag_square2)
    cos = prod_sum / denom
    zeros = paddle.zeros_like(cos)
    pos = 1 - cos
    neg = paddle.clip(cos - margin, min=0)
    out_pos = paddle.where(label == 1, pos, zeros)
    out_neg = paddle.where(label == -1, neg, zeros)
    out = out_pos + out_neg

    if reduction == 'none':
        return out
    if reduction == 'mean':
        return paddle.mean(out, name=name)
    elif reduction == 'sum':
        return paddle.sum(out, name=name)
Y
yangguohao 已提交
3355 3356


3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
def triplet_margin_with_distance_loss(
    input,
    positive,
    negative,
    distance_function=None,
    margin=1.0,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
    r"""
    Measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where the default distance function

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

3386
    or user can defined their own distance functions. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:

        input (Tensor):Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        distance_function (callable, optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
3402

3403 3404
        margin (float, optional): A nonnegative margin representing the minimum difference
            between the positive and negative distances required for the loss to be 0. Default value is :math:`1`.
3405

Y
yangguohao 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
        swap (bool, optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
3417

Y
yangguohao 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_with_distance_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
3441 3442 3443 3444 3445
        raise ValueError(
            "'reduction' in 'triplet_margin_with_distance_loss' "
            "should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3446 3447 3448 3449
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
姜永久 已提交
3450
    if not in_dygraph_mode():
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
        check_variable_and_dtype(
            input,
            'input',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            positive,
            'positive',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
        check_variable_and_dtype(
            negative,
            'negative',
            ['float32', 'float64'],
            'triplet_margin_with_distance_loss',
        )
Y
yangguohao 已提交
3469 3470

    if not (input.shape == positive.shape == negative.shape):
3471 3472 3473 3474 3475
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3476

3477 3478 3479
    distance_function = (
        distance_function
        if distance_function is not None
Y
yangguohao 已提交
3480
        else paddle.nn.PairwiseDistance(2)
3481
    )
Y
yangguohao 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    if not paddle.all(positive_dist > 0) or not paddle.all(negative_dist > 0):
        raise ValueError(
            "The positive distance or negative distance should be greater than 0, "
3493 3494
            "The distance functions should be checked."
        )
Y
yangguohao 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
Y
yangguohao 已提交
3504 3505


3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
def triplet_margin_loss(
    input,
    positive,
    negative,
    margin=1.0,
    p=2,
    epsilon=1e-6,
    swap=False,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
    r"""
        Measures the triplet loss given an input
        tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
        This is used for measuring a relative similarity between samples. A triplet
        is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
        examples` respectively). The shapes of all input tensors should be
        :math:`(N, *)`.

        The loss function for each sample in the mini-batch is:

        .. math::
            L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


        where

        .. math::
            d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor): Positive tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        negative (Tensor): Negative tensor, the data type is float32 or float64.
            The shape of label is the same as the shape of input.

        margin (float, Optional): Default: :math:`1`.

        p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional): Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool,Optional): The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.


        reduction (str, Optional):Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='none')
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])


            loss = F.triplet_margin_loss(input, positive, negative, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.19165580])

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
3593 3594
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3595 3596 3597 3598
    if margin < 0:
        raise ValueError(
            "The margin between positive samples and negative samples should be greater than 0."
        )
姜永久 已提交
3599
    if not in_dygraph_mode():
3600 3601 3602 3603 3604 3605 3606 3607 3608
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            positive, 'positive', ['float32', 'float64'], 'triplet_margin_loss'
        )
        check_variable_and_dtype(
            negative, 'negative', ['float32', 'float64'], 'triplet_margin_loss'
        )
Y
yangguohao 已提交
3609 3610

    if not (input.shape == positive.shape == negative.shape):
3611 3612 3613 3614 3615
        raise ValueError(
            "input's shape must equal to "
            "positive's shape and  "
            "negative's shape"
        )
Y
yangguohao 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632

    distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
    positive_dist = distance_function(input, positive)
    negative_dist = distance_function(input, negative)

    if swap:
        swap_dist = distance_function(positive, negative)
        negative_dist = paddle.minimum(negative_dist, swap_dist)

    loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss
3633 3634


3635 3636 3637 3638 3639 3640 3641 3642 3643
def multi_margin_loss(
    input,
    label,
    p: int = 1,
    margin: float = 1.0,
    weight=None,
    reduction='mean',
    name=None,
):
Y
yangguohao 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
    r"""
        Measures a multi-class classification hinge loss between input :math:`input` and label :math:`label`:

        For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
        output :math:`label_i` is:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}

        where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.

        Optionally, you can give non-equal weighting on the classes by passing
        a 1D :attr:`weight` tensor into the constructor.

        The loss function for i-th sample then becomes:

        .. math::
            \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}


    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes.

        label (Tensor): Label tensor, the data type is int32 or int64. The shape of label is (N,)

        p (int, Optional): The power num. Default: :math:`1`.

        margin (float, Optional): Default: :math:`1`.

        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .


        reduction (str, Optional):Indicate how to calculate the loss by batch_size.
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``

        name (str, Optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output: Tensor. The tensor variable storing the multi_margin_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([1, 2, 1], dtype=paddle.int32)
            loss = F.multi_margin_loss(input, label, margin=1.0, reduction='none')
            print(loss)

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'multi_margin_loss' should be 'sum', 'mean' or 'none', "
3706 3707
            "but received {}.".format(reduction)
        )
Y
yangguohao 已提交
3708

姜永久 已提交
3709
    if not in_dygraph_mode():
3710 3711 3712 3713 3714 3715
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'multi_margin_loss'
        )
        check_variable_and_dtype(
            label, 'label', ['int32', 'int64'], 'multi_margin_loss'
        )
Y
yangguohao 已提交
3716 3717 3718 3719
    if not (input.shape[0] == label.shape[0]):
        raise ValueError(
            "The label's shape[0] should be equal to input's shape[0], "
            "but received input's shape[0] {} and label's shape[0]:{}. ".format(
3720 3721 3722
                input.shape[0], label.shape[0]
            )
        )
Y
yangguohao 已提交
3723 3724 3725
    label = label.reshape((-1, 1))
    index_sample = paddle.index_sample(input, label)
    if weight is not None:
姜永久 已提交
3726
        if not in_dygraph_mode():
3727 3728 3729
            check_variable_and_dtype(
                weight, 'weight', ['float32', 'float64'], 'multi_margin_loss'
            )
Y
yangguohao 已提交
3730 3731 3732
        if not (input.shape[1] == weight.shape[0]):
            raise ValueError(
                "The weight's shape[0] should be equal to input's shape[1]"
3733 3734 3735 3736
                "but received weight's shape[0]: {} and input's shape[1]: {}".format(
                    weight.shape[0], input.shape[1]
                )
            )
Y
yangguohao 已提交
3737 3738 3739
        weight = paddle.gather(weight, label, axis=0).reshape((-1, 1))
        loss = paddle.mean(
            paddle.pow(
3740 3741 3742 3743 3744
                paddle.clip(weight * (margin - index_sample + input), min=0.0),
                p,
            ),
            axis=1,
        ) - weight * (margin**p / paddle.shape(input)[1])
Y
yangguohao 已提交
3745
    else:
3746 3747 3748 3749 3750 3751 3752 3753 3754
        loss = (
            paddle.mean(
                paddle.pow(
                    paddle.clip(margin - index_sample + input, min=0.0), p
                ),
                axis=1,
            )
            - margin**p / paddle.shape(input)[1]
        )
Y
yangguohao 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss


3764 3765
def soft_margin_loss(input, label, reduction='mean', name=None):
    """
3766

3767 3768 3769 3770 3771 3772 3773 3774
    The API measures the soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

3775
        input (Tensor): The input predications tensor with shape: ``[N, *]``,
3776
            N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf.
3777
            Available dtype is float32, float64.
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

        label (Tensor): The target labels tensor with the same shape as
            ``input``. The target labels which values should be numbers -1 or 1.
            Available dtype is int32, int64, float32, float64.

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:

3795
        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is [1].
3796 3797 3798 3799 3800 3801 3802 3803 3804

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            output = paddle.nn.functional.soft_margin_loss(input, label)
3805 3806 3807 3808 3809 3810 3811
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])

            input = paddle.uniform(shape=(5, 5), dtype="float32", min=0.1, max=0.8)
            label = paddle.randint(0, 2, shape=(5, 5), dtype="int64")
            label[label==0]=-1
3812 3813

            output = paddle.nn.functional.soft_margin_loss(input, label, reduction='none')
3814 3815 3816 3817 3818 3819 3820
            print(output)
            # Tensor(shape=[5, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.09917796, 0.52613139, 0.56263304, 0.82736146, 0.38776723],
            #         [1.07179427, 1.11924267, 0.49877715, 1.10026348, 0.46184641],
            #         [0.84367639, 0.74795729, 0.44629076, 0.55123353, 0.77659678],
            #         [0.39465919, 0.76651484, 0.54485321, 0.76609844, 0.77166790],
            #         [0.51283568, 0.84757161, 0.78913331, 1.05268764, 0.45318675]])
3821

3822 3823 3824 3825
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in soft_margin_loss should be 'sum', "
3826 3827 3828
            "'mean' or 'none', but received %s, which is not allowed."
            % reduction
        )
3829

姜永久 已提交
3830
    if not in_dygraph_mode():
3831
        fluid.data_feeder.check_variable_and_dtype(
3832 3833 3834 3835 3836 3837 3838 3839
            input, 'input', ['float32', 'float64'], 'soft_margin_loss'
        )
        fluid.data_feeder.check_variable_and_dtype(
            label,
            'label',
            ['int32', 'int64', 'float32', 'float64'],
            'soft_margin_loss',
        )
3840 3841

    if not (input.shape == label.shape):
3842
        raise ValueError("input's shape must equal to " "label's shape")
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

    label = fluid.layers.cast(label, input.dtype)
    out = paddle.log(1 + paddle.exp(-label * input))

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out