layer.py 19.7 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
Y
Yu Yang 已提交
15 16 17
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
the way how to configure a neural network topology in Paddle Python code.
18

Y
Yu Yang 已提交
19
The primary usage shows below.
20

Y
Yu Yang 已提交
21
..  code-block:: python
22

Y
Yu Yang 已提交
23
    import paddle.v2 as paddle
24

Y
Yu Yang 已提交
25 26 27 28
    img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
    hidden = paddle.layer.fc(input=img, size=200)
    prediction = paddle.layer.fc(input=hidden, size=10,
                                 act=paddle.activation.Softmax())
29

Y
Yu Yang 已提交
30
    # use prediction instance where needed.
Y
Yu Yang 已提交
31
    parameters = paddle.parameters.create(cost)
32
"""
Q
qiaolongfei 已提交
33

Q
qiaolongfei 已提交
34
import collections
Y
Yu Yang 已提交
35
import inspect
Q
qiaolongfei 已提交
36 37
import re

Q
qiaolongfei 已提交
38
import paddle.trainer_config_helpers as conf_helps
Q
qiaolongfei 已提交
39 40 41
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
42 43
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
44
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
45 46
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
47
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
Q
qiaolongfei 已提交
48
from paddle.trainer_config_helpers.layers import RecurrentLayerGroupSetGenerator, Generator
49
from paddle.trainer_config_helpers.layers import layer_support
Q
qiaolongfei 已提交
50

L
Luo Tao 已提交
51
import activation
Q
qiaolongfei 已提交
52
import attr
Q
qiaolongfei 已提交
53
import data_type
Q
qiaolongfei 已提交
54
from config_base import Layer, __convert_to_v2__
Q
qiaolongfei 已提交
55

Y
Yu Yang 已提交
56
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
57

Q
qiaolongfei 已提交
58

D
dangqingqing 已提交
59
def parse_network(output_layers, extra_layers=None):
Q
qiaolongfei 已提交
60
    """
D
dangqingqing 已提交
61 62
    Parse all layers in the neural network graph and
    then generate a ModelConfig object.
Y
Yu Yang 已提交
63 64 65 66 67 68

    ..  note::

        This function is used internally in paddle.v2 module. User should never
        invoke this method.

D
dangqingqing 已提交
69 70 71 72 73
    :param output_layers: Output layers.
    :type output_layers: Layer
    :param extra_layers: Some layers in the neural network graph are not in the
                         path of output_layers.
    :type extra_layers: Layer
Y
Yu Yang 已提交
74 75
    :return: A ModelConfig object instance.
    :rtype: ModelConfig
Q
qiaolongfei 已提交
76
    """
D
dangqingqing 已提交
77 78 79 80 81
    if not isinstance(output_layers, collections.Sequence):
        output_layers = [output_layers]
    if extra_layers is not None and not isinstance(extra_layers,
                                                   collections.Sequence):
        extra_layers = [extra_layers]
Q
qiaolongfei 已提交
82 83

    def __real_func__():
Y
Yu Yang 已提交
84 85 86 87
        """
        __real_func__ is the function that config_parser.parse invoked. It is
        the plain old paddle configuration function.
        """
Q
qiaolongfei 已提交
88
        context = dict()
D
dangqingqing 已提交
89
        real_output = [each.to_proto(context=context) for each in output_layers]
90 91 92 93
        if extra_layers is not None:
            extra_output = [
                each.to_proto(context=context) for each in extra_layers
            ]
Q
qiaolongfei 已提交
94 95 96 97 98
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
99 100 101 102 103 104 105
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Y
Yu Yang 已提交
106 107
    METHOD_NAME = 'data_layer'

Q
qiaolongfei 已提交
108
    def __init__(self, name, type, **kwargs):
109
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
110

Q
qiaolongfei 已提交
111
        self.type = type
Q
qiaolongfei 已提交
112 113
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
114 115 116

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

Q
qiaolongfei 已提交
117
    def to_proto_impl(self, **kwargs):
Q
qiaolongfei 已提交
118
        args = dict()
Q
qiaolongfei 已提交
119
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
120 121
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
122 123
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
124 125
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)

Y
Yu Yang 已提交
126 127 128 129 130 131 132 133 134 135 136
    def __map_docstr__(doc):
        doc = re.sub(r'(data = [^\)]+)\).*',
                     "data = paddle.layer.data(name=\"input\", "
                     "type=paddle.data_type.dense_vector(1000))", doc)

        doc = re.sub(r':param size:.*',
                     ':param type: Data type of this data layer', doc)
        doc = re.sub(r':type size:.*',
                     ":type size: paddle.v2.data_type.InputType", doc)
        return doc

Q
qiaolongfei 已提交
137

138
class MemoryV2(Layer):
Q
qiaolongfei 已提交
139
    def __init__(self, name, extra_input=None, **kwargs):
Q
qiaolongfei 已提交
140 141 142 143 144 145 146 147 148 149
        """
        Init memory object, if memory is inited inside recurrent_group step
        function, it may depend on a boot_layer that should be initialized
        outside recurrent_group, so we:
            1. add RecurrentLayerInput to extra_parent of self.
            2. add boot_layer to the extra_parent of RecurrentLayerInput.

        :param extra_input: list of RecurrentLayerInput
        :type extra_input: [RecurrentLayerInput]
        """
Y
Yu Yang 已提交
150
        self.name = name
Q
qiaolongfei 已提交
151
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())
Y
Yu Yang 已提交
152 153
        self.__kwargs__ = kwargs
        self.__boot_layer_name__ = None
Q
qiaolongfei 已提交
154

Y
Yu Yang 已提交
155 156 157 158 159 160 161
        if 'boot_layer' in kwargs:
            begin_of_current_rnn = []
            # TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
            # function inside step.
            st = inspect.stack()
            for i in xrange(len(st)):
                locs = inspect.stack()[i][0].f_locals
Q
qiaolongfei 已提交
162 163 164
                keys = locs.keys()
                for key in keys:
                    val = locs[key]
Y
Yu Yang 已提交
165 166
                    if isinstance(val, RecurrentLayerInput):
                        begin_of_current_rnn.append(val)
Q
qiaolongfei 已提交
167 168 169 170
                    elif isinstance(val, collections.Sequence):
                        for v in val:
                            if isinstance(v, RecurrentLayerInput):
                                begin_of_current_rnn.append(v)
Y
Yu Yang 已提交
171 172 173 174 175 176 177 178 179

                if begin_of_current_rnn:
                    break
            assert begin_of_current_rnn is not None
            for extra in begin_of_current_rnn:
                self.append_extra_parent(extra)
                extra.append_extra_parent(kwargs['boot_layer'])
                self.__boot_layer_name__ = kwargs['boot_layer'].name

Q
qiaolongfei 已提交
180
    def to_proto_impl(self, **kwargs):
Q
qiaolongfei 已提交
181 182 183 184 185
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
186

Y
Yu Yang 已提交
187
        if self.__boot_layer_name__ is not None:
Q
qiaolongfei 已提交
188
            args['boot_layer'] = self.__context__[self.__boot_layer_name__]
Q
qiaolongfei 已提交
189

Q
qiaolongfei 已提交
190 191 192 193 194 195 196
        size = args.get('size', None)
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
Q
qiaolongfei 已提交
197
        return conf_helps.memory(name=self.name, **args)
Q
qiaolongfei 已提交
198

199 200 201
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
202 203 204 205 206 207 208
    def use_context_name(self):
        """
        memory layer will have the same name with some layer
        :return:
        """
        return True

Q
qiaolongfei 已提交
209

Q
qiaolongfei 已提交
210 211 212 213 214 215 216
class StaticInputV2(object):
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerV2)
        self.name = input.name
        self.input = input
        self.is_seq = is_seq
        self.size = size
217
        # TODO(add size check)
Q
qiaolongfei 已提交
218
        # assert input.size is not None or size is not None
219 220


Q
qiaolongfei 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
class BaseGeneratedInputV2(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInputV2(BaseGeneratedInputV2):
    def __init__(self, size, embedding_name, embedding_size):
        super(GeneratedInputV2, self).__init__()
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size

    def after_real_step(self, input):
        return max_id(input=input, name='__beam_search_predict__')

    def before_real_step(self):
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding(
            input=predict_id,
            size=self.embedding_size,
            param_attr=attr.ParamAttr(name=self.embedding_name))
        return trg_emb


class RecurrentLayerGroupSetGeneratorV2(Layer):
    def __init__(self, eos_name, max_length, beam_size, num_results_per_sample):
        self.eos_name = eos_name
        self.max_length = max_length
        self.beam_size = beam_size
        self.num_results_per_sample = num_results_per_sample
        super(RecurrentLayerGroupSetGeneratorV2, self).__init__(
            name=eos_name, parent_layers={})

    def to_proto_impl(self, **kwargs):
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=self.eos_name,
                max_num_frames=self.max_length,
                beam_size=self.beam_size,
                num_results_per_sample=self.num_results_per_sample))
        return self

    def context_name(self):
        return self.eos_name + ".fake"

    def use_context_name(self):
        return True


281 282 283 284 285 286 287 288 289 290
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
291
        pass
292 293 294 295 296 297 298 299 300 301

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
302
        self.__inputs__ = []
303
        if input is not None:
D
dangqingqing 已提交
304
            self.__inputs__ = input
305

D
dangqingqing 已提交
306 307
        other_kwargs = dict()
        other_kwargs['name'] = name
308 309 310 311
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr
D
dangqingqing 已提交
312
        parent_layers = {"input": self.__inputs__}
Q
qiaolongfei 已提交
313
        super(MixedLayerV2, self).__init__(name, parent_layers)
314 315 316 317
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
318
            self.__inputs__.append(other)
319 320
            return self
        else:
Y
Yu Yang 已提交
321
            raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
322 323

    def __enter__(self):
D
dangqingqing 已提交
324
        assert len(self.__inputs__) == 0
325 326 327 328 329
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

Q
qiaolongfei 已提交
330
    def to_proto_impl(self, **kwargs):
331 332 333 334 335
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
Q
qiaolongfei 已提交
336
        size = args.get('size', None)
Q
qiaolongfei 已提交
337 338 339 340 341 342
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
D
dangqingqing 已提交
343
        return getattr(conf_helps, self.__method_name__)(**args)
344 345 346


@wrap_name_default("mixed")
D
dangqingqing 已提交
347
@wrap_act_default(act=activation.Linear())
348 349 350 351 352 353 354 355 356 357 358
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


359
class RecurrentLayerInput(Layer):
360
    def __init__(self, recurrent_name, index, parent_layers):
Q
qiaolongfei 已提交
361 362 363 364 365 366
        parents_len = len(parent_layers)
        assert parents_len <= 1
        if parents_len == 0:
            self.__parents__ = []
        else:
            self.__parents__ = parent_layers.values()[0]
Q
qiaolongfei 已提交
367
        self.__recurrent_name__ = recurrent_name
Q
qiaolongfei 已提交
368 369
        name = self.__parents__[
            index].name if index >= 0 else self.context_name()
370
        super(RecurrentLayerInput, self).__init__(
Q
qiaolongfei 已提交
371
            name=name, parent_layers=parent_layers)
372 373 374 375

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

Q
qiaolongfei 已提交
376
    def to_proto_impl(self, **kwargs):
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

Q
qiaolongfei 已提交
395
    def to_proto_impl(self, **kwargs):
396 397 398 399 400
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


Q
qiaolongfei 已提交
401
LayerV2 = Layer
Q
qiaolongfei 已提交
402
data = DataLayerV2
Y
Yu Yang 已提交
403
data.__name__ = 'data'
L
Luo Tao 已提交
404 405
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
Q
qiaolongfei 已提交
406
memory = MemoryV2
Q
qiaolongfei 已提交
407

Y
Yu Yang 已提交
408 409

def __layer_name_mapping__(inname):
Q
qiaolongfei 已提交
410
    if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
Y
Yu Yang 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
Y
Yu Yang 已提交
432 433 434
        lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
                        'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left',
Q
qiaolongfei 已提交
435
                        'right', 'output_mem'],
Y
Yu Yang 已提交
436 437 438 439 440 441 442
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)
Y
Yu Yang 已提交
443
    globals()[new_name].__name__ = new_name
Y
Yu Yang 已提交
444 445 446 447 448 449 450 451 452 453 454 455


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
456

Q
qiaolongfei 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

    non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
                               input)
    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': non_static_inputs})
        for i in xrange(len(non_static_inputs))
    ]

Q
qiaolongfei 已提交
473 474 475
    extra_input = None
    if len(non_static_inputs) == 0:
        extra_input = RecurrentLayerInput(
Q
qiaolongfei 已提交
476
            recurrent_name=name, index=-1, parent_layers={})
Q
qiaolongfei 已提交
477

Q
qiaolongfei 已提交
478 479 480 481 482 483 484
    def __real_step__(*args):
        rnn_input = list(args)
        static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
        for static_input in static_inputs:
            mem_name = "__%s_memory__" % static_input.input.name
            mem = memory(
                name=mem_name,
Q
qiaolongfei 已提交
485
                extra_input=extra_input,
Q
qiaolongfei 已提交
486
                is_seq=static_input.is_seq,
Q
qiaolongfei 已提交
487
                size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
488 489 490
                boot_layer=static_input.input)
            with mixed(
                    name=mem_name,
Q
qiaolongfei 已提交
491
                    size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
492 493
                    act=activation.Identity()) as mix:
                mix += identity_projection(input=mem)
Q
qiaolongfei 已提交
494
            rnn_input.insert(input.index(static_input), mix)
Q
qiaolongfei 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        return step(*rnn_input)

    actual_output = __real_step__(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv
Y
Yu Yang 已提交
513 514


Q
qiaolongfei 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
@wrap_name_default()
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
                num_results_per_sample=None):
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    assert num_results_per_sample <= beam_size
    # logger.warning("num_results_per_sample should be less than beam_size")

    if isinstance(input, StaticInputV2) or isinstance(
            input, BaseGeneratedInputV2):
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
        assert isinstance(each_input, StaticInputV2) or isinstance(
            each_input, BaseGeneratedInputV2)
        if isinstance(each_input, BaseGeneratedInputV2):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]
    assert isinstance(gipt, BaseGeneratedInputV2)

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
        generator = RecurrentLayerGroupSetGeneratorV2(
            eos_name, max_length, beam_size, num_results_per_sample)

        args = list(args)
        before_step_layer = gipt.before_real_step()
        before_step_layer.append_child(
            layer=generator, parent_names=[before_step_layer.name])
        args.insert(generated_input_index, before_step_layer)

        predict = gipt.after_real_step(step(*args))

        eos_layer = eos(input=predict, eos_id=eos_id, name=eos_name)
        predict.append_child(layer=eos_layer, parent_names=[predict.name])

        return predict

    # tmp = paddle.layer.recurrent_group(
    #     step=__real_step__,
    #     input=real_input,
    #     reverse=False,
    #     name=name,
    #     is_generating=True)
    tmp = recurrent_group(
        step=__real_step__, input=real_input, name=name)

    return tmp


Y
Yu Yang 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))

__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

# convert projection
for prj in __projection_names__:
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
    globals()[prj].__name__ = prj

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)
    globals()[op[0]].__name__ = op[0]