distribute_transpiler.py 70.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
53 54


T
typhoonzero 已提交
55 56 57 58 59 60
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
61

T
typhoonzero 已提交
62 63
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
64 65


66 67 68 69
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
70
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
71
    """
72 73 74 75 76 77
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
78
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
79 80 81

    Args:
        var_list (list): List of variables.
82 83
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
84 85
        min_block_size (int): Minimum splitted block size.
    Returns:
86
        blocks (list[(varname, block_id, current_block_size)]): A list
87
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
88 89 90
    """
    blocks = []
    for var in var_list:
91
        split_count = slice_count
T
typhoonzero 已提交
92 93 94 95
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
96
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
106
        # update split_count after aligning
T
typhoonzero 已提交
107
        split_count = int(math.ceil(var_numel / float(block_size)))
108
        for block_id in range(split_count):
T
typhoonzero 已提交
109 110 111 112 113 114 115
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
116 117 118 119 120 121 122
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
123
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
132
class DistributeTranspiler(object):
Y
yi.wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

180 181 182 183 184
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
185 186
                  sync_mode=True,
                  startup_program=None):
187
        """
Y
yi.wu 已提交
188 189 190 191 192 193 194 195 196 197 198
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
199 200
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
201 202 203
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
204 205
        if startup_program is None:
            startup_program = default_startup_program()
206
        self.origin_program = program
W
Wu Yi 已提交
207 208
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
209

210 211 212 213 214 215 216
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
217
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
218
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
219
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
220
        self.grad_name_to_param_name = dict()
221 222
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
223
            self.grad_name_to_param_name[grad_var.name] = param_var.name
224

T
tangwei12 已提交
225 226 227 228 229 230
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

231
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
232
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
233
        self._init_splited_vars()
234

G
gongweibao 已提交
235
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
236
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
237
        send_vars = []
238 239 240 241 242 243

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
244
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
245

G
gongweibao 已提交
246
        if not self.config.slice_var_up:
247 248
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
249

250
        self.grad_name_to_send_dummy_out = dict()
251
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
252
            eplist = ps_dispatcher.dispatch(splited_vars)
253

G
gongweibao 已提交
254
            if not self.config.slice_var_up:
255 256
                assert (len(splited_vars) == 1)

257
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
258
            if len(splited_vars) == 1:
259
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
260
                index = find_op_by_output_arg(program.global_block(),
261
                                              splited_grad_varname)
Y
Yancey1989 已提交
262
            elif len(splited_vars) > 1:
263
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
264
                index = find_op_by_output_arg(program.global_block(),
265
                                              splited_grad_varname)
Y
Yancey1989 已提交
266
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
267
                index += 1
Y
Yancey1989 已提交
268 269
            else:
                AssertionError("Can not insert the send op by original "
270
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
271

W
Wu Yi 已提交
272 273
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
274
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
275

W
Wu Yi 已提交
276 277 278 279
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
280
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
281
                index=index + 1,
282
                type="send",
Y
update  
Yancey1989 已提交
283
                inputs={"X": splited_vars},
284
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
285 286
                attrs={
                    "epmap": eplist,
287
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
288 289 290 291
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
292
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
293
                })
Y
update  
Yancey1989 已提交
294 295
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
296 297

        if self.sync_mode:
W
Wu Yi 已提交
298 299
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
300 301 302 303 304 305
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
            input_deps = self.grad_name_to_send_dummy_out.values()

Y
Yancey1989 已提交
306 307
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
308
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
309
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
310 311
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
312
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
313
                })
Y
Yancey1989 已提交
314

G
gongweibao 已提交
315
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
316
        recv_vars = []
Y
update  
Yancey1989 已提交
317
        for _, var in enumerate(send_vars):
318
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
319
        ps_dispatcher.reset()
Y
Yancey1989 已提交
320 321
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
322
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
323 324
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
325

Y
Yancey1989 已提交
326
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
327
        all_recv_outputs = []
328
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
329 330 331 332
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
333 334 335 336
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
337
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
338 339
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
340 341 342 343 344 345 346 347 348
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
349 350
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
351
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
352 353 354
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
355
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
356 357
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
358
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
359
                })
T
typhoonzero 已提交
360

Q
qiaolongfei 已提交
361
        if self.sync_mode:
W
Wu Yi 已提交
362
            # form a WAW dependency
Q
qiaolongfei 已提交
363 364 365
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
366
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
367 368 369 370
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
371

372
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
373 374
            if len(splited_var) <= 1:
                continue
375
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
376
            program.global_block().append_op(
T
typhoonzero 已提交
377
                type="concat",
T
typhoonzero 已提交
378
                inputs={"X": splited_var},
T
typhoonzero 已提交
379
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
380
                attrs={"axis": 0})
T
typhoonzero 已提交
381

G
gongweibao 已提交
382 383
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

384
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
385 386
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
387
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
388

W
Wu Yi 已提交
389
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
390 391 392 393 394 395
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
396
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
397
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
398
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
399
        self.origin_program.__str__()
G
gongweibao 已提交
400

W
Wu Yi 已提交
401 402 403
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

404
        return self.origin_program
T
typhoonzero 已提交
405

W
Wu Yi 已提交
406
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
407 408 409 410
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
411
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
412
            eplist (list): A list of strings indicating
G
gongweibao 已提交
413 414 415 416

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
417
        startup_program = self.startup_program
G
gongweibao 已提交
418 419 420 421

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
422
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
443
                inputs={"X": []},
G
gongweibao 已提交
444 445 446 447 448 449
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
450 451
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
452 453 454
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
455
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
456 457 458 459 460
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
461
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
462 463 464
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
465
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
466
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
467 468 469 470 471 472 473 474 475 476
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
477 478 479 480 481 482 483 484
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
485 486
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
487
        Get parameter server side program.
488

Y
yi.wu 已提交
489 490
        Args:
            endpoint (str): current parameter server endpoint.
491

Y
yi.wu 已提交
492 493
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
494
        """
Y
yi.wu 已提交
495 496 497 498
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
W
Wu Yi 已提交
499 500 501
        sys.stderr.write("get_pserver_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
T
typhoonzero 已提交
502 503
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
504
        pserver_program.random_seed = self.origin_program.random_seed
505
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
506 507 508 509 510 511 512 513
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
514 515 516 517 518
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
519 520 521 522 523 524 525 526 527
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
528
            if self.sync_mode and self.trainer_num > 1:
529
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
530 531 532 533 534 535 536 537 538
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
539

Q
qiaolongfei 已提交
540
        # step 3
541
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
542 543 544
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
545
        # step 3.2
T
typhoonzero 已提交
546 547 548 549
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
550 551
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
552
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
553
        # step 3.3
T
typhoonzero 已提交
554
        # Iterate through the ops, and if an op and the optimize ops
555
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
556
        # append it into the sub program.
T
typhoonzero 已提交
557 558 559

        global_ops = []

Y
wip  
yi.wu 已提交
560 561
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
562
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
563
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
564
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
565
            elif op not in lr_ops:
Q
Qiyang Min 已提交
566
                self._append_pserver_non_opt_ops(block, op)
567 568 569 570 571 572

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
573

Y
Yancey1989 已提交
574
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
575 576 577 578 579 580 581 582
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
583
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
584 585 586

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
587
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
588 589

            # clone ops
Y
Yancey1989 已提交
590 591
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
592
                # clone sub_block of op
Y
Yancey1989 已提交
593
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
594 595 596 597

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

598
        # append lr decay ops to the child block if exists
599
        lr_ops = self._get_lr_ops()
600 601
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
602
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
603 604
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
605
            optimize_blocks.append(lr_decay_block)
606
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
607
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
608
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
609 610
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
611

T
typhoonzero 已提交
612
        # append op to the current block
Q
qiaolongfei 已提交
613
        grad_to_block_id = []
Q
qiaolongfei 已提交
614
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
615
        for idx, opt_op in enumerate(opt_op_on_pserver):
616
            per_opt_block = pserver_program.create_block(pre_block_idx)
617
            optimize_blocks.append(per_opt_block)
618
            # append grad merging ops before clip and weight decay
619
            # cases may like:
T
typhoonzero 已提交
620
            # L2Decay op -> clip op -> optimize
621 622 623 624 625 626 627
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
628
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
629 630
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
631
                if ufind.is_connected(op, opt_op) and op not in global_ops:
632
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
633
                                           merged_var, lr_ops)
T
typhoonzero 已提交
634

W
Wu Yi 已提交
635 636
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
637
        # append global ops
638
        if global_ops:
Q
qiaolongfei 已提交
639 640
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
641
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
642
            for glb_op in global_ops:
X
Xi Chen 已提交
643
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
644
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
645

646
        # process distributed lookup_table
Q
qiaolongfei 已提交
647
        prefetch_var_name_to_block_id = []
648 649
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
650
            table_opt_block = self._create_table_optimize_block(
651
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
652
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
653
            prefetch_var_name_to_block_id = self._create_prefetch_block(
654
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
655 656
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
657

T
tangwei12 已提交
658 659
            pserver_program._distributed_lookup_table = self.table_name

660 661 662
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
663
            assert len(prefetch_var_name_to_block_id) > 0
664
        else:
Q
qiaolongfei 已提交
665
            assert len(prefetch_var_name_to_block_id) == 0
666

667
        attrs = {
668
            "optimize_blocks": optimize_blocks,
669 670 671
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
672
            "grad_to_block_id": grad_to_block_id,
673 674 675 676
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
677
            attrs['checkpint_block_id'] = checkpoint_block_id
678

T
typhoonzero 已提交
679 680 681 682 683
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
684
            attrs=attrs)
685

T
tangwei12 已提交
686
        # add distributed attrs
T
tangwei12 已提交
687
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
688
            endpoint)
689

W
Wu Yi 已提交
690
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
691 692
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
693 694
        return pserver_program

W
Wu Yi 已提交
695 696 697 698 699 700
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
701

W
Wu Yi 已提交
702 703 704 705 706 707 708
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

709 710
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
711
                            pserver_program=None,
712
                            startup_program=None):
T
typhoonzero 已提交
713
        """
W
Wu Yi 已提交
714 715
        **Deprecated**

T
typhoonzero 已提交
716 717 718
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
719 720 721

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
722 723
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
724
                when initalizing
725

Y
yi.wu 已提交
726 727
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
728
        """
W
Wu Yi 已提交
729 730 731 732 733 734 735 736 737 738 739 740
        sys.stderr.write("get_startup_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
        if pserver_program != None:
            sys.stderr.write("passing pserver_program to get_startup_program()\
                is deprecated, you can use new API get_pserver_programs() to\
                get both pserver main program and startup program.")
        if startup_program != None:
            sys.stderr.write("passing startup_program to get_startup_program()\
                is deprecated, use fluid.program_guard() or pass this argument\
                to transpile() call.")

T
typhoonzero 已提交
741
        s_prog = Program()
W
Wu Yi 已提交
742
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
743
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
744 745 746 747 748 749 750 751 752 753 754
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
755
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
756
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
757
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
758 759 760 761
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
762
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
763 764
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
765 766 767 768 769 770 771 772 773 774
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
775 776

            if op_on_pserver:
777 778 779
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
780 781 782
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
783
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
784 785 786 787
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
788
                    attrs=op.all_attrs())
789 790

        # add slice vars
T
tangwei12 已提交
791
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
792

T
typhoonzero 已提交
793 794
        return s_prog

T
tangwei12 已提交
795 796 797
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
798
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
799
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
800
            if not block_name:
801 802
                continue

T
tangwei12 已提交
803
            block_idx = int(block_name.split(block_suffix)[1])
804 805 806 807 808 809
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
810
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
811

T
tangwei12 已提交
812
        return slice_vars_and_attrs
813

814 815
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
816 817 818 819 820 821 822 823 824
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
825
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
877
    def _init_splited_vars(self):
Y
yi.wu 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
901
        if self.config.slice_var_up:
Y
yi.wu 已提交
902 903
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
904 905 906
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
907
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
908 909
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
910 911 912
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
913 914 915 916
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
917 918
        assert (len(grad_blocks) == len(param_blocks))

919
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
920 921
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
922
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
923 924 925 926
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
927
        # dict(grad_splited_var -> param_splited_var)
928
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
929 930 931 932
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
933
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
934 935

        # create mapping of endpoint -> split var to create pserver side program
936
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
937 938 939 940 941 942 943 944 945
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

946
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
947 948
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
949
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
950 951 952 953 954 955 956 957 958
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
959 960 961 962 963 964 965 966 967

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

968
                    lookup_table_op_index = list(all_ops).index(op)
969 970 971
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
972
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
973
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
974 975 976 977 978 979
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
980
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
981 982 983 984
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
985 986

                    # insert split_ids_op
W
Wu Yi 已提交
987
                    program.global_block()._insert_op(
988
                        index=lookup_table_op_index,
989 990 991 992 993 994 995
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
996
                        outputs={"Out": prefetch_input_vars})
997 998

                    # insert prefetch_op
W
Wu Yi 已提交
999
                    program.global_block()._insert_op(
1000
                        index=lookup_table_op_index + 1,
1001
                        type="prefetch",
Q
qiaolongfei 已提交
1002 1003
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
1004
                        attrs={
1005
                            "epmap": pserver_endpoints,
1006 1007 1008
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1009
                        })
1010 1011

                    # insert concat_op
W
Wu Yi 已提交
1012
                    program.global_block()._insert_op(
1013 1014 1015 1016 1017 1018 1019
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1020
                            'X': prefetch_output_vars
1021
                        },
1022 1023 1024 1025 1026
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1027
                        })
1028 1029

                    # delete lookup_table_op
1030
                    delete_ops(program.global_block(), [op])
1031 1032 1033
                    # break for loop
                    break

Y
Yancey1989 已提交
1034
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1035
        # 2. add split_ids_op and send_op to send gradient to pservers
1036 1037
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1038
        table_grad_name = grad_var_name(self.table_name)
1039 1040 1041 1042
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1043
                program.global_block()._insert_op(
1044 1045 1046 1047 1048
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1049
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1050
                program.global_block()._insert_op(
1051
                    index=op_index + 2,
1052
                    type="send",
1053
                    inputs={'X': self.trainer_side_table_grad_list},
1054 1055 1056 1057 1058
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1059
                    attrs={
1060
                        "sync_mode": False,
Y
Yancey1989 已提交
1061
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1062 1063 1064 1065 1066
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1067
                    })
1068 1069 1070 1071 1072 1073
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1102 1103

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1104
                                     pre_block_idx, grad_to_block_id):
1105 1106
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1107 1108
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1109

T
tangwei12 已提交
1110
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1111 1112
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1113 1114 1115
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1116 1117
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1118
            shape=table_shape,
Y
Yancey1989 已提交
1119 1120 1121
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1122 1123
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1124
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1125
            self.origin_program.global_block().vars[grad_var_name(
1126
                self.table_name)])
1127 1128 1129 1130

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1131 1132
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1133
        ][0]
Q
qiaolongfei 已提交
1134
        table_opt_block = pserver_program.create_block(pre_block_idx)
1135

1136 1137 1138
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1139
            pserver_side_table_grad_list = [
1140 1141 1142 1143 1144 1145 1146 1147 1148
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1149
            # append sum op for pserver_side_table_grad_list
1150 1151
            table_opt_block.append_op(
                type="sum",
1152
                inputs={"X": pserver_side_table_grad_list},
1153 1154
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1155 1156
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1157
            origin_grad_name = grad_var.name
1158 1159
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1160 1161
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1162
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1163
            grad_var = pserver_program.global_block()._rename_var(
1164
                origin_grad_name, splited_grad_name)
1165 1166 1167 1168 1169 1170 1171 1172 1173

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1174
        # only support sgd now
1175 1176 1177 1178
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1179
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1180

1181 1182 1183
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1184 1185
        return table_opt_block

T
tangwei12 已提交
1186 1187 1188 1189 1190 1191
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1192
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1193
            name="kLookupTablePath",
T
tangwei12 已提交
1194 1195
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1196

T
tangwei12 已提交
1197
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1198
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1199 1200 1201 1202
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1203
            attrs={'file_path': "none"})
T
tangwei12 已提交
1204 1205 1206

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1207 1208 1209 1210 1211
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1212
        Create vars for each split.
T
typhoonzero 已提交
1213 1214
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1215 1216 1217 1218
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1219
        Returns:
1220
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1221
                from original var name to each var split.
T
typhoonzero 已提交
1222
        """
1223 1224

        # varname->[(block_id, current_block_size)]
1225
        block_map = collections.OrderedDict()
1226

1227
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1228 1229
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1230
            if varname not in block_map:
T
typhoonzero 已提交
1231
                block_map[varname] = []
1232
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1233

M
minqiyang 已提交
1234
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1235
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1236
            if len(splited) == 1:
1237
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1238 1239
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1240
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1241 1242 1243 1244 1245
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1246
                continue
T
typhoonzero 已提交
1247
            var_mapping[varname] = []
T
typhoonzero 已提交
1248 1249 1250 1251
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1252

T
typhoonzero 已提交
1253
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1254
                size = block[1]
M
minqiyang 已提交
1255
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1256 1257 1258
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1259
                new_var_name = ""
1260
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1261 1262 1263 1264 1265
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1266
                var = program.global_block().create_var(
T
typhoonzero 已提交
1267 1268
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1269
                    dtype=orig_var.dtype,
1270
                    type=orig_var.type,
T
typhoonzero 已提交
1271
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1272
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1273
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1274
        return var_mapping
T
done  
typhoonzero 已提交
1275

W
Wu Yi 已提交
1276
    def _create_splited_vars(self, source_var, block, tag):
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1287 1288 1289 1290 1291 1292
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1293
            persistable=persistable)
T
done  
typhoonzero 已提交
1294

Y
Yancey1989 已提交
1295
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1296 1297 1298 1299
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1300
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1310
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1320

T
typhoonzero 已提交
1321 1322 1323 1324
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1325
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1341 1342
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1343 1344 1345 1346 1347
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1348 1349
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1350
        orig_var_name = ""
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1361
        else:
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1389
        else:
1390 1391 1392 1393 1394 1395
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1396
            for i in range(self.trainer_num):
1397 1398 1399 1400 1401 1402 1403
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1404 1405
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1406 1407 1408 1409 1410
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1411
        return merged_var
T
typhoonzero 已提交
1412

1413
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1414
                            grad_to_block_id, origin_program, merged_var):
1415
        program = optimize_block.program
T
typhoonzero 已提交
1416
        pserver_block = program.global_block()
1417
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1428
        for key in opt_op.input_names:
T
typhoonzero 已提交
1429 1430 1431
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1432
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1433 1434
                if not param_block:
                    return
T
typhoonzero 已提交
1435
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1436
                    name=param_block.name,
T
typhoonzero 已提交
1437
                    persistable=True,
T
typhoonzero 已提交
1438 1439 1440
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1441
            elif key == "LearningRate":
1442
                # learning rate variable has already be created by non-optimize op,
1443
                # don't create it once again.
1444
                lr_varname = opt_op.input(key)[0]
1445
                if lr_varname in pserver_block.vars:
1446 1447 1448 1449 1450 1451 1452 1453 1454
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1455

T
typhoonzero 已提交
1456
        for key in opt_op.input_names:
1457
            new_shape = None
W
Wu Yi 已提交
1458
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1459
                continue
1460
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1461 1462 1463 1464
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1465
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1466 1467 1468 1469 1470
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1471

1472
        # change output's ParamOut variable
1473 1474
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1475
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1476

1477
        optimize_block.append_op(
T
typhoonzero 已提交
1478 1479
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1480
            outputs=outputs,
G
gongweibao 已提交
1481
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1482

1483 1484
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1485
        for _, g in six.iteritems(var_dict):
1486 1487 1488 1489 1490 1491
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1492 1493 1494
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1495
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1496 1497 1498 1499
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1500
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1501 1502 1503

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1504
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1505 1506 1507 1508
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1509
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1510

Y
Yancey1989 已提交
1511
        return block.append_op(
G
gongweibao 已提交
1512
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1513 1514

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1515
        program = optimize_block.program
1516
        # Append the ops for parameters that do not need to be optimized/updated
1517 1518
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1519
        for key, varlist in six.iteritems(inputs):
1520 1521
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1522
            for var in varlist:
1523 1524 1525 1526 1527 1528
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1529
                elif var.name not in program.global_block().vars:
1530
                    program.global_block().create_var(
T
typhoonzero 已提交
1531 1532 1533 1534 1535
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1536 1537
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1538
        for key, varlist in six.iteritems(outputs):
1539 1540 1541
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1542 1543 1544 1545
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1546
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1547
                    program.global_block()._clone_variable(var)
1548

Y
Yancey1989 已提交
1549
        return optimize_block.append_op(
T
typhoonzero 已提交
1550
            type=opt_op.type,
T
typhoonzero 已提交
1551 1552
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1553
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1554

1555 1556 1557 1558
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1559 1560
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1561 1562 1563 1564 1565 1566
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1567 1568
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1569 1570 1571 1572 1573 1574
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1575
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1576 1577
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1578 1579 1580 1581 1582 1583 1584
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1585
        if op.input("Param")[0] in param_names:
1586 1587 1588
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1589
                param = op.input("Param")[0]
T
typhoonzero 已提交
1590
                if same_or_split_var(n, param) and n != param:
1591 1592 1593
                    return True
            return False

T
typhoonzero 已提交
1594
    def _get_input_map_from_op(self, varmap, op):
1595
        """Returns a dict from op input name to the vars in varmap."""
1596
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1608
        """Returns a dict from op output name to the vars in varmap."""
1609
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1619 1620 1621 1622 1623 1624

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1625
            if self._is_optimizer_op(op):
1626 1627 1628 1629
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1630
        block = self.origin_program.global_block()
1631 1632 1633 1634 1635
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1636

1637 1638 1639 1640 1641
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1642
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1643 1644 1645 1646 1647 1648
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1649 1650
                    # we only need to append op for once
                    break
1651
        return lr_ops
Y
Yancey1989 已提交
1652

W
Wu Yi 已提交
1653 1654 1655 1656 1657
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1658 1659
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1660 1661 1662
            return True
        return False

Y
Yancey1989 已提交
1663
    def _get_optimize_pass(self):
1664
        """
1665
        Get optimizer operators, parameters and gradients from origin_program
1666 1667 1668 1669
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1670 1671 1672
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1673
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1674
        for op in block.ops:
W
Wu Yi 已提交
1675
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1676
                opt_ops.append(op)
1677 1678 1679 1680 1681
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1682 1683
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1684 1685 1686 1687
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1688 1689 1690
            else:
                pass
        return opt_ops, params_grads